

10Gbps, 2-Port, USB 3.1 Mux/DeMux ReDriver

Features

ReDriverTM

- → 10Gbps Serial Link with Linear Equalizer
- → Full Compliancy to USB 3.1 Gen-2 and Gen-1 Super Speed Standard
- → 1 to 2 DeMux from Host Tx to Device Rx
- → 2 to 1 Mux from Device Tx to Host Rx
- → Adjustable Output Linear Swing, Flat Gain, and Equalization via I2C or Pin Control
- → 100Ω Differential CML I/Os
- → Automatic Receiver Detect
- → Auto Slumber Mode for Adaptive Power Management
- → Supply Voltage 3.3V
- → Temperature Range: -40°C to 70°C
- → Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- → Halogen and Antimony Free. "Green" Device (Note 3)
- → Packaging (Pb-free & Green):
 - 40-contact, ZLC40 (TQFN)

Applications

- → Notebooks
- → Mobile Phones
- Tablets
- → Docking Station

Description

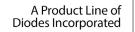
PI3EQX10612 is a low-power, high-performance, 10Gbps 2port USB 3.1 Gen-2/Gen-1 Mux/DeMux ReDriver.

The 2-Port Mux/DeMux ReDriver

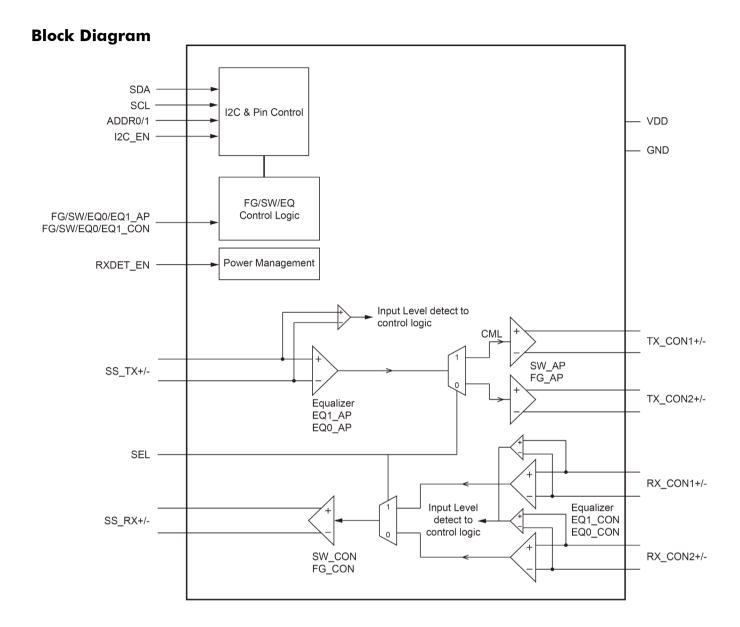
The ReDriver provides programmable equalization, swing and flat gain to optimize performance over a variety of physical mediums by reducing intersymbol interference. The ReDriver supports two 100Ω differential CML data I/Os between the Protocol ASIC to a switch fabric, over cable, or to extend the signals across other distant data pathways on the user's platform.

The integrated equalization circuitry provides flexibility with signal integrity of the signal before the ReDriver. A low-level input signal detection and output squelch function is provided for each channel. Each channel operates fully independently. The channels' input signal level determines whether the output is active.

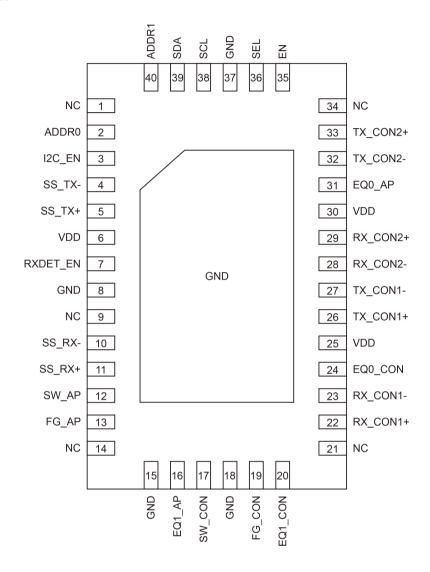
The ReDriver also includes an adaptive power management feature to maximize battery life for power sensitive consumer devices.


ReDriver is a trademark of Diodes Incorporated.

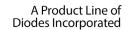
Notes


1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.



Pin Configuration

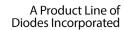


Pin Descriptions

Pin #	Pin Name	I/O	Description
Thermal PAD, 8, 15,18,37	GND	Ground	Ground pin. Thermal pad.
2, 40	ADDR0, ADDR1	I	Input pins to indicate I2C address:
2, 40	ADDIO, ADDIO	1	Please refer to Table of I2C slave address
			Input pin to enable I2C mode (with internal $300k\Omega$
3	I2C EN	I	pull-up resistor).
3	IZC_EN	1	HIGH: I2C mode
			LOW: Pin control mode
5,4	SS_TX+, SS_TX-,		Input terminals. With selectable input termination
22,23	RX_CON1+, RX_CON1-,	I	between 50Ω to VDD, $75k\Omega$ to VbiasRX, or $75k\Omega$
29,28	RX_CON2+, RX_CON2-		to GND.
6,25,30	VDD	Power	Dedicated 3.3V Power Supply
7	RXDET_EN	I	ReDriver Loading Detection Enable Pin (with internal $300k\Omega$ pull-up resistor). HIGH: ReDriver Loading Detection Enabled (Default Setting in Application) LOW: ReDriver Loading Detection Disabled
11,10 26,27 33,32	SS_RX+,SS_RX-, TX_CON1+,TX_CON1-, TX_CON2+, TX_CON2-	О	Output terminals. With selectable output termination between 50Ω to VbiasTx, $6k\Omega$ to VbiasTx, $75k\Omega$ to VbiasTx and $75k\Omega$ to GND.
12,13,16,31	SW_AP FG_AP EQ1_AP, EQ0_AP	I	SW/FG/EQ setup for USB channels with receiver terminal is connected to AP Side. Please refer to truth table in Page 13.
17,19,20,24	SW_CON FG_CON EQ1_CON, EQ0_CON	I	SW/FG/EQ setup for USB channels with receiver terminal is connected to Connector Side. Please refer to truth table in Page 13.
			Active-high enable input pin (with internal $300k\Omega$
25	ENI	т .	pull-up resistor).
35	EN	I	HIGH: Enabled/Active State
			LOW: Disabled/Low Power State
36	SEL	I	Input Pin to select USB channel (with internal $300k\Omega$ pull-up resistor). Please refer to truth table in Page 13.
38	SCL	I	I2C communication clk signal
39	SDA	I/O	I2C communication data signal
1,9,14,21,34	NC	_	No connection

Maximum Ratings

Storage Temperature	-65 to 150	°C
Supply Voltage	-0.5 to 3.8	V
Voltage of 3.3V IO pins (SCL, SDA, RXDET_EN, ADDR0/1, SEL, EN, SW_AP,FG_AP,EQ1_AP, EQ0_AP,SW_CON,FG_CON,EQ1_CON,EQ0_CON)	-0.5 to VDD+0.5	V
Voltage of SS_TX+/-,SS_RX+/-,TX_CON1/2 +/-, RX_CON1/2 +/-	-0.5 to VDD+0.5	V
Sink Current from SDA	10	mA
Continuous Input Current to SS_TX+/-, RX_CON1/2 +/-	±30	mA
ESD (HBM)	2KV	_


Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operation Conditions

Symbol	Parameter	Min.	Max.	Units
$V_{ m DD}$	Supply Voltage	3.0	3.6	V
V _{IO}	Voltage of IO pins (SCL, SDA, RXDET_EN, ADDR0/1, SEL, EN, SW_AP,FG_AP, EQ1_AP, EQ0_AP, SW_CON, FG_CON, EQ1_CON, EQ0_CON)	0	3.6	V
V _{TXRX}	Voltage of SS_TX+/-, SS_RX+/-, TX_CON1/2 +/-, RX_CON1/2 +/-	0	3.6	V
V _{NOISE}	Supply Noise up to 50MHz		100	mVpp
T_{A}	Operating Temperature	-40	70	°C

ReDriver AC/DC Electrical Characteristics

Power Consumption (VDD)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
I_{PD}	Typical Pin Power Down Current	EN=0	_	26	100	μΑ
I_{DDQ_PD}	I2C Power Down Current	EN=1 I2C Byte4<7:4>=1111			340	μΑ
USB 3.1 Ger	2 Mode					
I_{U0}	Current in USB U0 Mode	EN=1, USB U0 mode	_	80	112	mA
I_{U1}	Current in USB U1 Mode	EN=1, USB U1 mode	_	16	20	mA
I _{U2/U3}	Current in USB U2/U3 Mode	EN=1, USB U2/U3 mode		0.5	0.6	mA
I_{RXDET}	Current RXDET Mode	EN=1, RXDET mode		0.5	0.6	mA
4-Level Cont	rol Pins (FG_AP, FG_CON, EQ1_A	AP, EQ0_AP, EQ1_CON, EQ0	_CON, SW_A	P, SW_CON)	ı	
$V_{ m IH}$	DC Input Logic High		0.92×VDD	VDD	_	V
$V_{ m IF}$	DC Input Logic "Float"		0.59×VDD	$0.67 \times VDD$	$0.75 \times VDD$	V
V_{IR}	DC Input Logic with Rext to GND	_	0.25×VDD	0.33×VDD	0.41×VDD	V
$V_{\rm IL}$	DC Input Logic Low			GND	0.08×VDD	V
I _{IH}	Input High Current		_		50	μΑ
$I_{\rm IL}$	Input Low Current		-75	_	_	μΑ
Rext	External Resistance Connects to GND (±5%)	_	64.6	68	71.4	kΩ
2-Level Cont	rol Pins (EN, SEL, ADDR0/1, RXD	ET_EN)				
V _{IH}	DC Input Logic High	—	2.0		_	V
$V_{\rm IL}$	DC Input Logic Low				0.8	V
$I_{ m IH}$	Input High Current				25	μΑ
$ m I_{IL}$	Input Low Current		-25			μΑ
	Pins (SCL, SDA)					
V_{IH}	DC Input Logic High		1.1			V
$V_{ m IL}$	DC Input Logic Low				0.4	V

USB Differential Channel

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
USB Differential	Input						
C _{RXPARASITIC}	The Parasitic Capacitor for RX	_	_		1.0	pF	
R _{RX-DIFF-DC}	DC Differential Input Impedance		72		120	Ω	
R _{RX-SINGLE-DC}		DC impedance limits					
		are need to guarantee					
	DC Single Ended Input Impedance	RxDet. Measured with	18		30	Ω	
		respect to GND over a					
		voltage of 500mV max					
$Z_{RX ext{-}HIZ ext{-}DC ext{-}PD}$	DC Input CM Input Impedance for	(Vcm=0 to 500mV)	25			kΩ	
	V>0 During Reset or Power Down						
C _{AC COUPLING}	AC Coupling Capacitance		75		265	nF	
V _{RX-CM-AC-P}	Common Mode Peak Voltage	AV up to 5GHz			150	mVpeak	
V _{RX-CM-DC-Active-}	Common Mode Peak Voltage	Between U0 and U1,			200	mVpeak	
Idle-Delta-P		Ac up to 5GHz			200	III v pcak	
USB Differential	1						
$V_{TX\text{-DIFF-PP}}$	Output Differential p-p Voltage	Differential Swing			1.2	Vppd	
	Swing	$ V_{TX-D+}-V_{TX-D-} $			1.2	v ppu	
R _{TX-DIFF-DC}	DC Differential TX Impedance	_	72		120	Ω	
V _{TX-RCV-DET}	Amount of Voltage Change				600	mV	
	Allowed During RxDet				000	111 V	
Cac coupling	AC Coupling Capacitance		75		265	nF	
T _{TX-EYE(10Gbps)}	Transmitter Eye, Include all Jitter	At the silicon pad.	0.646			UI	

A Product Line of Diodes Incorporated

PI3EQX10612

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
		10Gbps				
$T_{TX\text{-EYE}(5Gbps)}$	Transmitter Eye, Include all Jitter	At the silicon pad. 5Gbps	0.625	_		UI
$T_{TX\text{-}DJ\text{-}DD(10Gbps)}$	Transmitter Deterministic Jitter	At the silicon pad. 10Gbps	_		0.17	UI
$T_{TX\text{-DJ-DD}(5Gbps)}$	Transmitter Deterministic Jitter	At the silicon pad. 5Gbps	_	_	0.205	UI
C _{TXPARASITIC}	The Parasitic Capacitor for TX	_		_	1.1	pF
R _{TX-DC-CM}	Common mode DC output Impedance	_	18	_	30	Ω
V _{TX-DC-CM}	Instantaneous Allowed DC Common Mode Voltage at the Connector Side of the AC Coupling Capacitors	$ V_{TX-D+}+V_{TX-D-} /2$	0	_	2.2	V
V_{TX-C}	Common-Mode Voltage	$ V_{TX-D+}+V_{TX-D-} /2$	VDD-2	_	VDD	V
V _{TX-CM-AC-PP-}	Active Mode TX AC Common Mode Voltage	$V_{TX-D+}+V_{TX-D-}$ for both time and amplitude	_	_	100	mVpp
V _{TX-CM-DC-} Active_Idle-Delta	$ \begin{array}{l} Common\ Mode\ Delta\ Voltage \\ Avg_{uo}(V_{TEX\text{-}D^+} + V_{TX\text{-}D^-})/2\text{-} \\ Avg_{u1}(V_{TX\text{-}D^+} + V_{TX\text{-}D^-})/2 \end{array} $	Between U0 to U1	_	_	200	mV-peak
$V_{ ext{TX-Idle-Diff-AC-pp}}$	Idle Mode AC Common Mode Delta Voltage V _{TX-D+} -V _{TX-D-}	Between Tx+ and Tx- in idle mode. Use the HPF to remove DC components. =1/LPF. No AC and DC signals are applied to Rx terminals.	_	_	10	mVppd
$V_{ ext{TX-Idle-Diff-DC}}$	Idle Mode DC Common Mode Delta Voltage V _{TX-D+} -V _{TX-D-}	Between Tx+ and Tx- in idle mode. Use the LPF to remove DC components. =1/HPF. No AC and DC signals are applied to Rx terminals.	_	_	10	mV
G_p	Peaking Gain (Compensation at 5GHz, Relative to 100MHz, 100mV _{p-p} Sine Wave Input)	EQ<3:0>=0000 EQ<3:0>=0101 EQ<3:0>=1010 EQ<3:0>=1111	_	6.42 9.5 11.77 13.54		dB
	100m v _{p-p} ome wave input)	Variation around typical	-3	_	+3	dB
G_{F}	Flat Gain (100MHz, EQ<3:0>=0000, SW<1:0>=01)	FG<1:0>=00 FG<1:0>=01 FG<1:0>=10 FG<1:0>=11	_	-2.07 -0.24 +0.62 +1.77	_	dB
		Variation around typical	-3	_	+3	dB
$V_{\mathrm{SW_100M}}$	-1dB Compression Point Output Swing (at 100MHz)	SW<1:0>=00 SW<1:0>=01	_	900 1000	_	mVppd
$V_{\rm SW_5G}$	-1dB Compression Point Output Swing (at 5GHz)	SW<1:0>=00 SW<1:0>=01	_	600 750	_	mVppd
DD _{NEXT} Note3	Differential Near-End Crosstalk	100MHz to 5GHz		-45		dB
DD _{FEXT} Note3	Differential Far-End Crosstalk	100MHz to 5GHz		-45		dB

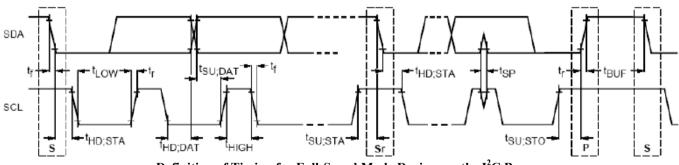
		100MHz to 5GHz,				
		FG<1:0>=11,				
		EQ<3:0>=0000,		0.6	_	
	(2)	SW<1:0>=01				
$V_{NOISE-INPUT}$	Input-Referred Noise ⁽²⁾	100MHz to 5GHz,				mV_{RMS}
		FG<1:0>=11,				
		EQ<3:0>=1111,		0.5		
		SW<1:0>=01				
		100MHz to 5GHz,				
		FG<1:0>=11,		0.0		**
		EQ<3:0>=0000,		0.8	_	mV_{RMS}
* 7	0 (12 (2)	SW<1:0>=01				
$V_{\text{NOISE-OUTPUT}}$	Output-Referred Noise ⁽²⁾	100MHz to 5GHz,				
		FG<1:0>=11,		1		
		EQ<3:0>=1111,		1		mV_{RMS}
		SW<1:0>=01				
		10 MHz to 4.1 GHz		-13.0		dB
S11	Input Return Loss	differential		-13.0		цБ
311	input Return Loss	1 GHz to 4.1 GHz		-5.0		dB
		common mode		-3.0		uБ
		10 MHz to 4.1 GHz		-15		dB
S22	Output Return Loss	differential		-13		uБ
522	Output Return 2033	1 GHz to 4.1 GHz		-6.0		dB
		common mode		0.0		ub.
Signal and Frequ	uency Detectors	T		r		·
1		Threshold of LFPS				
		when the input				
$V_{\mathrm{TH~UPM}}$	Unplug Mode Detector Threshold	impedance of the	200		800	mVppd
· III_OTWI		ReDriver is 67kohm to				· PP
		VbiasRx only. Used in				
		the unplug mode.				
$V_{TH\ DSM}$	Deep Slumber Mode Detector	LFPS signal threshold	100		600	mVppd
55	Threshold	in Deep slumber mode				11
V	Action Made Detector Throat 11	Signal threshold in	65		175	
$ m V_{TH_AM}$	Active Mode Detector Threshold	Active and slumber	65	_	175	mVppd
		mode Detect the frequency of				
F_{TH}	LFPS Frequency Detector	Detect the frequency of the input CLK pattern	100	_	400	MHz
т	Turn on of Unplug Mode				2	me
T _{ON UPM}	Turn on of Deep Slumber Mode	TX pin to RX pin latency when input		_	<u>3</u> 5	ms
T _{ON DSM}	Turn on of Slumber Mode	signal is LFPS			20	μs ns
T _{ON SM}	Turii on or Siumber Mode	Signal is Li'FS	_		∠0	118


Note:

^{1.} Measured using a vector-network analyzer (VNA) with -15dBm power level applied to the adjacent input. The VNA detects the signal at the output of the victim channel. All other inputs and outputs are terminated with 50Ω .

^{2.} Guaranteed by design and characterization.

^{3.} Subtract the Channel Gain from the Total Gain to get the Actual Crosstalk



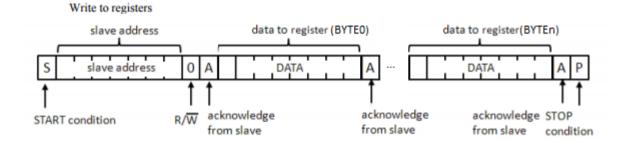
I²C AC Electrical Characteristics

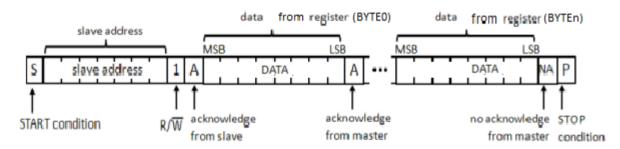
Symbol	Parameter	Standar I ²		Fast Mode I ² C		Fast Mode Plus I ² C		Unit
Symbol	1 at ameter	Min	Max	Min	Max	Min	Max	_
f_{SCL}	SCL Clock Frequency	0	100	0	400	0	1000	kHz
t _{BUF}	Bus Free Time Between a STOP and START Condition	4.7	_	1.3	_	0.5	_	μs
t _{HD;STA}	Hold Time (Repeated) START Condition	4.0	_	0.6	_	0.26	_	μs
$t_{\mathrm{SU;STA}}$	Setup Time for a Repeated START Condition	4.7	_	0.6	_	0.26	_	μs
t _{SU;STO}	Setup Time for STOP Condition	4.0	_	0.6	_	0.26		μs
t _{VD;ACK} ^[1]	Data Valid Acknowledge Time	_	3.45	_	0.9	_	0.45	μs
t _{HD;DAT} ^[2]	Data Hold Time	0	_	0	_	0		ns
$t_{\mathrm{VD;DAT}}$	Data Valid Time	_	3.45	_	0.9	_	0.45	ns
$t_{\mathrm{SU;DAT}}$	Data Setup Time	250	_	100	_	50	_	ns
t _{LOW}	LOW Period of the SCL Clock	4.7	_	1.3	_	0.5	_	μs
t _{HIGH}	HIGH Period of the SCL Clock	4.0	_	0.6	_	0.26	_	μs
t_{f}	Fall Time of Both SDA and SCL Signals		300		300		120	ns
t _r	Rise Time of Both SDA and SCL Signals		1000		300		120	ns
t _{SP}	Pulse Width of Spikes that must be Suppressed by the Input Filter	_	50	_	50	_	50	ns

Notes

^{2.} C_b equals the total capacitance of one BUS line in pF. If mixed with high-speed devices, faster fall times are allowed according to the I²C specification.

^{1.} A fast-mode l^2 C-bus device can be used in a standard-mode l^2 C-bus system, but the requirement $t_{SETDAT} \ge 250$ ns must be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line $tr_max + t_{SETDAT} = 1000 + 250 = 1250$ ns (according to the standard-mode l^2 C bus specification) before the SCL line is released.





I²C Slave Address

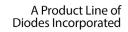
I2C_EN	ADDR1	ADDR0	ReDriverI2C Slave Address
VDD	GND	GND	A0h
VDD	GND	VDD	A2h
VDD	VDD	GND	A4h
VDD	VDD	VDD	A6h
GND	X	X	Pin Mode

I²C Data Transfer

*Registers of ReDriver can be Read/Written in Bulk Mode Only

ReDriver Detailed Description

ReDriver Register Table


	r Register			
	r Assignn)	
		n and Vendor ID Registe		
Bit	Type	Power-up Condition	Control Affected	Comment
7	RO	0	-	
6	RO	0	Revision ID	Rev# = 0000
5	RO	0		
4	RO	0		
3	RO	0		
2	RO	0	Vendor ID	Pericom ID = 0011
1	RO	1	Vendor 1D	1 checim is
0	RO	1		
	_ `	Type/Device ID Register		
Bit	Type	Power-up Condition	Control Affected	Comment
7	RO	0		Daviga Tyma
6	RO	0	Device Type	Device Type 0000 = Passive MUX
5	RO	0	Device Type	0000 - Passive MUX 0001 = Active MUX
4	RO	1		0001 - Active WOX
3	RO	0		
2	RO	0	Davis ID	D ID 0001
1	RO	0	Device ID	Device ID = 0001
0	RO	1		
		ount Register 32 Bytes)	l	
Bit	Type	Power-up Condition	Control Affected	Comment
7	RO	0		
6	RO	0		
5	RO	1		
4	RO	0		
3	RO	0	Register Byte count	I2C byte count = 32 bytes
2	RO	0		
1	RO	0		
0	RO	0		
		=	rer Detection Enable Control)	
				Comment
Bit	Type R/W	Power-up Condition	Control Affected	Comment
7		0	——————————————————————————————————————	Reserved
6	R/W	1	CONF<2>	
5	R/W	0	CONF<1>	Channel Assignment
4	R/W	1	CONF<0>	
3	R/W	0	-	Reserved
		0 if RXDET_EN pin=1;	RXDET_EN#	Far-end receiver detection enable/disable
2	R/W	1 if RXDET_EN pin=0		0 = Enable
	T /			1 = Disable
1	R/W	1	_	Reserved
0	R/W	0	<u> </u>	Reserved
BYTE		Down Control)		
Bit	Type	Power-up Condition	Control Affected	Comment
7	R/W	0	PD_CON_Rx1	CONx power override
6	R/W	0	PD_CON_Tx1	0 – Normal operation
5	R/W	0	PD_CON_Tx2	1 – Force the CONx to power down state
4	R/W	0	PD_CON_Rx2	1 - Porce the CONX to power down state
3	R/W	0	_	Reserved
2	R/W	0	_	Reserved
1	R/W	0	_	Reserved
0	R/W	0	_	Reserved
7	''	· · · · · · · · · · · · · · · · · · ·	l	

BYTE	5 (Equaliza	ation Flat Gain and -1dl	B Linear Swing Setting of CON Rx2)
Bit	Type	Power-up condition	Control Affected	Comment
7	R/W	0	EQ CON<3>	
6	R/W	0	EQ CON<2>	
5	R/W	0	EQ CON<1>	CON_Rx2 setting configuration
4	R/W	0	EQ CON<0>	
3	R/W	0	FG CON<1>	Equalizer
2	R/W	1	FG CON<0>	Flat Gain
1	R/W	0	SW CON<1>	Swing
0	R/W	1	SW CON<0>	
		tion Flat Cain and 1d1	B Linear Swing Setting of AP Tx2)	
Bit	Type	Power-up Condition	Control Affected	Comment
7	R/W	()	EQ AP<3>	Comment
	R/W	0	EQ_AI <3> EQ AP<2>	
6			<u>, </u>	CON Tx2 setting configuration
5	R/W	0	EQ_AP<1>	_
4	R/W	0	EQ_AP<0>	Equalizer
3	R/W	0	FG_AP<1>	Flat Gain
2	R/W	1	FG_AP<0>	Swing
1	R/W	0	SW_AP<1>	Ĭ
0	R/W	1	SW_AP<0>	
			B Linear Swing Setting of AP_Tx1)	
Bit	Type	Power-up Condition	Control Affected	Comment
7	R/W	0	EQ_AP<3>	
6	R/W	0	EQ_AP<2>	CON Tul setting configuration
5	R/W	0	EQ_AP<1>	CON_Tx1 setting configuration
4	R/W	0	EQ_AP<0>	Equalizar
3	R/W	0	FG AP<1>	Equalizer Flat Gain
2	R/W	1	FG AP<0>	
1	R/W	0	SW AP<1>	Swing
0	R/W	1	SW AP<0>	
BYTE	8 (Equaliza	ation, Flat Gain, and -1dl	B Linear Swing Setting of CON Rx1)
Bit	Type	Power-up Condition	Control Affected	Comment
7	R/W	0	EQ CON<3>	
6	R/W	0	EQ CON<2>	
5	R/W	0	EQ CON<1>	CON_Rx1 setting configuration
4	R/W	0	EQ CON<0>	
3	R/W	0	FG CON<1>	Equalizer
2	R/W	1	FG CON<0>	Flat Gain
1	R/W	0	SW CON<1>	Swing
0	R/W	1	SW CON<0>	
	9-11 (Rese	rved)	D11_CO11 0/	I
			able, and Timing Setting)	
Bit	,	Power-up Condition	Control Affected	Commont
7	Type R/W	()	IDET VTH<1>	Comment High Speed channel signal detector threshold
/		U		High Speed channel signal detector threshold
	R/W		IDET_VTH<0>	setting 00 50mVppd
6		1		01 65mVppd (Default)
6		1		10 80mVppd (Default)
5	D/W/	1	Pagaryad	11 95mVppd
5	R/W	1	Reserved	_
4	R/W	1	Reserved	
3	R/W	0	Reserved	<u> </u>
2	R/W	0	Reserved	_
1	R/W	0	Reserved	_
0	R/W	1	Reserved	<u> </u>
BYTE	13-31 (Res	served)		

Equalization Setting (dB):

EQ1pin	EQ0pin	EQ3	EQ2	EQ1	EQ0	@ 2.5GHz	@ 3GHz	@ 4GHz	@ 5GHz	@ 6GHz	Note
0	F	0	0	0	0	3.57	4.22	5.44	6.42	7.27	Default
0	1	0	0	0	1	3.83	4.56	5.93	7.04	8.00	
0	0	0	0	1	0	4.13	4.93	6.47	7.71	8.76	
0	R	0	0	1	1	4.41	5.29	6.95	8.29	9.42	_
R	1	0	1	0	0	4.98	5.89	7.61	8.99	10.14	_
R	F	0	1	0	1	5.25	6.23	8.05	9.50	10.70	
R	R	0	1	1	0	5.55	6.59	8.51	10.04	11.28	_
R	0	0	1	1	1	5.82	6.92	8.93	10.51	11.78	
F	0	1	0	0	0	6.39	7.44	9.39	10.93	12.16	
F	R	1	0	0	1	6.63	7.74	9.76	11.34	12.60	
F	F	1	0	1	0	6.90	8.05	10.14	11.77	13.05	
F	1	1	0	1	1	7.14	8.34	10.49	12.15	13.44	
1	R	1	1	0	0	7.51	8.71	10.87	12.53	13.81	
1	0	1	1	0	1	7.74	8.97	11.18	12.87	14.15	
1	1	1	1	1	0	7.98	9.25	11.51	13.23	14.51	
1	F	1	1	1	1	8.20	9.51	11.81	13.54	14.82	

Flat Gain Setting:

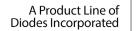
FGpin is the selection pin for the DC gain.

	- 0			
FGpin	FG<1:0>	Flat Gain Setting (dB)		
R	00	-2.07		
F	01	-0.24 (Default)		
0	10	0.62		
1	11	1.77		

Swing -1dB Compression Point Output Swing Setting:

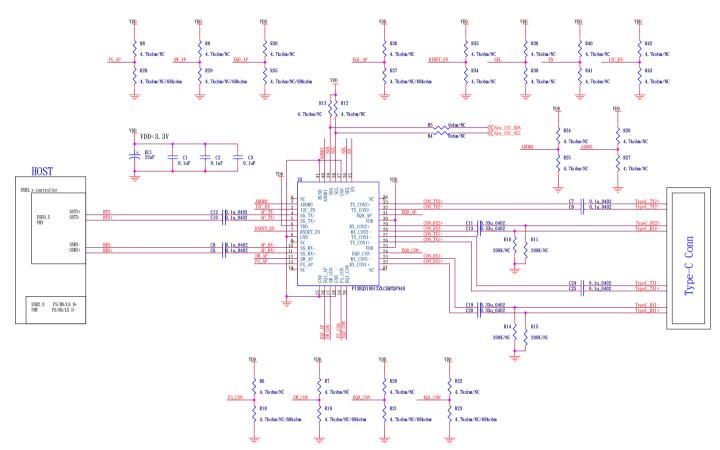
SWpin is the selection pin for SW.

SWpin	SW<1:0>	Swing Setting
0	00	900 mVppd
1	01	1000 mVppd (Default)
F	10	1100 mVppd
R	11	1200 mVppd


ReDriver Connection in Pin Mode

EN	SEL	ReDriver Status
0	X	Inactive
1	1	TX_CON1/RX_CON1 Active
1	0	TX_CON2/RX_CON2 Active

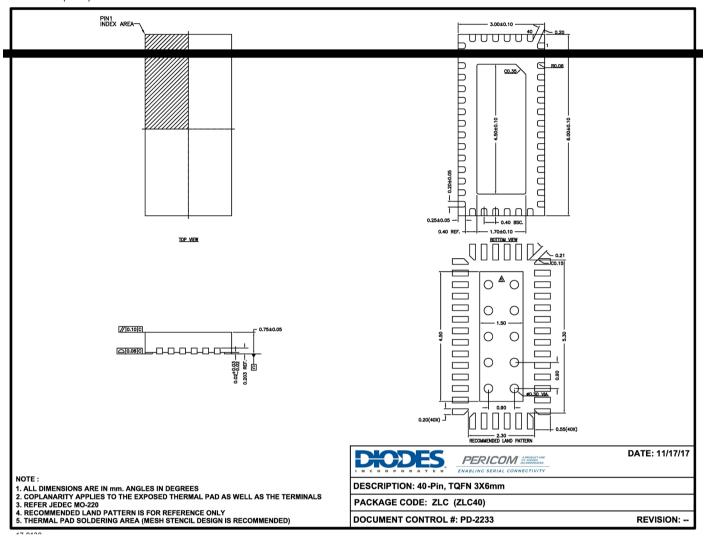
ReDriver Connection in I2C Mode


EN	BYTE3 CONF<2:0>	ReDriver Status
0	X	Inactive
1	100	TX_CON1/RX_CON1 Active
1	101 (default)	TX_CON2/RX_CON2 Active

Application Diagram

Part Marking

Z: Die Rev YY: Year WW: Workweek


1st X: Assembly Code 2nd X: Fab Code

Packaging Mechanical

40-TQFN (ZLC)

For latest package information:

See http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/.

Ordering Information

Ordering Number	Package Code	Package Description
PI3EQX10612ZLCEX	ZLC	40-Pin, 3mm x 6mm (TQFN)

Notes:

- No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- E = Pb-free and Green
- $_{5.}$ X suffix = Tape/Reel

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION)

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
- 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2019, Diodes Incorporated www.diodes.com