

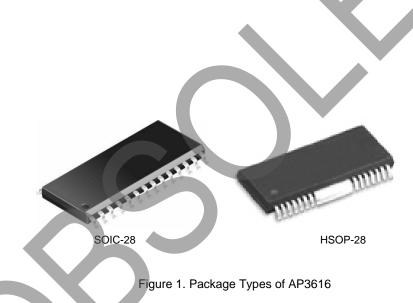
SIXTEEN-CHANNEL, 75mA CURRENT SINK WITH CURRENT MATCH

Description

The AP3616 is an sixteen-channel constant current sink with current match used for LED driver. It uses an external resistor to set the current for sixteen LED strings with an accuracy of $\pm 1.5\%$. The full scale LED current can be adjusted from 20mA to 75mA for each channel. The LED lightness can be adjusted by PWM dimming function.

The device can keep working normally without any damage when LEDs are short or open. It features undervoltage lockout protection and overtemperature protection.

The AP3616 has three interface terminals (FB, SYN and FBX pins). The FB and SYN pins allow the device to work with a DC/DC converter to drive LED arrays for good performance. And the FBX pin enables the device to be connected in parallel.


The AP3616 is available in SOIC-28 and HSOP-28 packages.

Features

- Input Voltage Range: 4.2V to 27V
- Maximum Output Current: Typical 1.2A (75mA per Channel)
- Current Match Accuracy (Typical): ±1.5%
- PWM / Linear Dimming Control
- Open LED Self-check and Protection
- Flexible Short LED Protection
- Undervoltage Lockout Protection
- Overtemperature Protection
- FBX and SYN Pins Enable Parallel Application
- Overvoltage Protection
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

Applications

- LCD Display Modules
- LCD Monitor
- LCD TV

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.

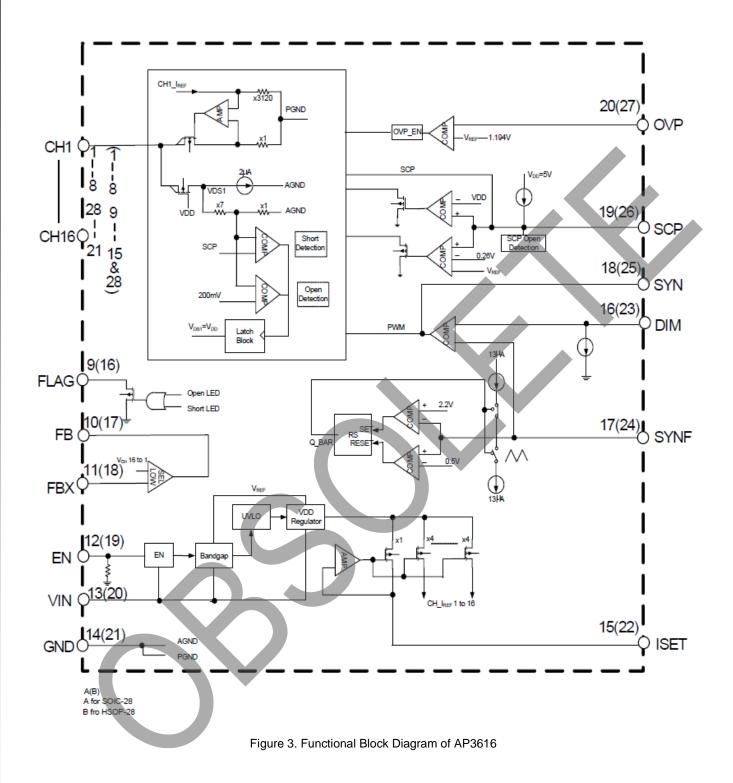
3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

AP3616

Pin Configuration

	M Package (SOIC-28)			M28 Package (HSOP-28)	
CH1 1 CH2 2 CH3 3 CH4 4 CH5 5 CH6 6 CH7 7 CH8 8 FLAG 9 FB 10 FBX 11 EN 12 VIN 13 GND 14	,	 28 CH9 27 CH10 26 CH11 25 CH12 24 CH13 23 CH14 22 CH15 21 CH16 20 OVP 19 SCP 18 SYN 17 SYNF 16 DIM 15 ISET 	CH1 1 CH2 2 CH3 3 CH4 4 CH5 5 CH6 6 CH7 7 CH6 6 CH7 7 CH10 10 CH10 10 CH11 11 CH12 12 CH13 13 CH14 14		28 CH16 27 OVP 26 SCP 25 SYN 24 SYNF 23 DIM 22 ISET 21 GND 20 VIN 19 EN 18 FBX 17 FB 16 FLAG 15 CH15

Figure 2. Pin Configuration of AP3616 (Top View)



Pin Description

Pin Number		Pin Name	Function			
SOIC-28	HSOP-28		Function			
1 to 8	1 to 8	CH1 to CH8	White LED cathode connection pins. If not used, leave them			
28 to 21	9 to 15 & 28	CH9 to CH16	unconnected			
9	16	FLAG	Error flag pin. When LED load goes to error (short or open), the flag open drain output will close			
10	17	FB	Feedback pin. This pin is an interface terminal, which samples the voltage of each channel, and outputs the lowest voltage of the string to DC/DC converter			
11	18	FBX	This pin is an interface terminal. Connect it to FB pin can achieve parallel application. If not used, leave it unconnected			
12	19	EN	Enable pin. Logic high enables the IC and logic low disables the IC			
13	20	VIN	Input voltage pin			
14	21	GND	Ground pin			
15	22	ISET	LED current setting pin. An external resistor is connected to this pin. Current on each channel can be expressed by ICHANNEL= 1.194*1560/RISET			
16	23	DIM	Dimming control pin. Adding a PWM signal or DC signal to this pin to control LED dimming. Connect it to high-voltage level if not used			
17	24	SYNF	Synchronous PWM frequency setting pin. A nF level of capacitor should be connected to this pin to set PWM frequency at about 80Hz to 25kHz			
18	25	SYN	PWM dimming synchronous pin, this pin outputs DC transformed PWM signal to synchronize parallel AP3616 and power converter, if not used, leave it unconnected			
19	26	SCP	LED short trigger voltage setting pin. This pin is used to set the LED short circuit protection voltage level			
20	27	OVP	This pin is used to trigger OVP condition. OVP triggering voltage should be lower than the OVP voltage of its cascade chip, such as, AP3039A in Figure 19			

Functional Block Diagram

Ordering Information

Part NumberMarking IDTemperature RangePackagePacking TypeAP3616M-G1AP3616M-G1-40 to 85°CSOIC-28TubeAP3616M28-G1AP3616M28-G1-40 to 85°CHSOP-28Tube		Circuit Type Package M: SOIC-28 M28:HSOP-28	<u>AP3616</u>	G1: Green Blank: Tube	
-40 to 85°C	Part Number	Marking ID	-	Package	Packing Type
AP3616M28-G1 AP3616M28-G1 -40 10 65 C HSOP-28 Tube	AP3616M-G1	AP3616M-G1		SOIC-28	Tube
	AP3616M28-G1	AP3616M28-G1	-40 10 85 0	HSOP-28	Tube

Absolute Maximum Ratings (@T_A = +25°C, unless otherwise specified.) (Note 4)

Parameter		Rating	Value	Unit
Input Voltage		Vin	30	V
FLAG Pin Voltage		Vflag	30	V
EN Pin Voltage		Ven	30	V
Voltage on Each Channel		Vснх	-0.3 to 60	V
Voltage on Other Separate Pins		-	-0.3 to 60	V
Thermal Resistance			72	°C/W
(Junction to Ambient, No Heat Sink)	SOIC-28 HSOP-28	Αίθ	59	°C/W
Operating Junction Temp	perature	TJ	150	°C
Lead Temperature (Soldering, 10 sec)		T _{STG}	-65 to 150	°C
ESD (Human Body Mode	el)	-	2,000	V
ESD (Machine Model			200	V

Note 4: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

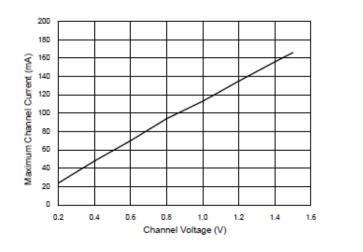
Recommended Operating Conditions (@T_A = +25°C, unless otherwise specified.)

Symbol	Parameter	Parameter			Unit
Vcc	Input Voltage	Input Voltage		27	V
fpwm	Recommended PWM Dimming Frequency		0.08	25	kHz
		VCHX=0.5V	20	40	
Існх	Full Scale Setting Current per Channel	VCHX=0.8V	20	60	mA
		су 0.08 25 VCHx=0.5V 20 40	75	1	
ТА	Operating Temperature Range		-40	85	°C

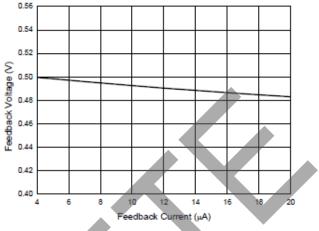
Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
V _{CC} SECTION						
Quiescent Current	IQ	ISET, SYN and FB Pin Floating		2	4	mA
Shutdown Supply Current	ISTBY	Ven=0V, ISET,SYN and FB Pin Floating	-	0.1	1	μΑ
Undervoltage Lockout Threshold	Vuvlo	VIN Falling Edge	3.65	3.9	4.15	V
Undervoltage Lockout Hysteresis	Vuvlo_hys		-	300	-	mV
CHANNEL SECT	ION					
Maximum Output Current per Channel		VCHX=0.8V, RISET=0	75	-	-	mA
Current Sink Saturation Voltage per Channel	VCHX_SAT	ICHX=60mA	-	-	0.6	V
Current Matching Accuracy between Any Two Channels	CH_MATCHING	Існх=60mA, Vсн=0.8V	-	-	3	%
Output Current Load Regulation		Vснх=0.5V to 2.8V	-	-	4	%
Output Current Line Regulation (Note 5)	-	Vснх=4.2V to 2.8V	-	-	2	%V

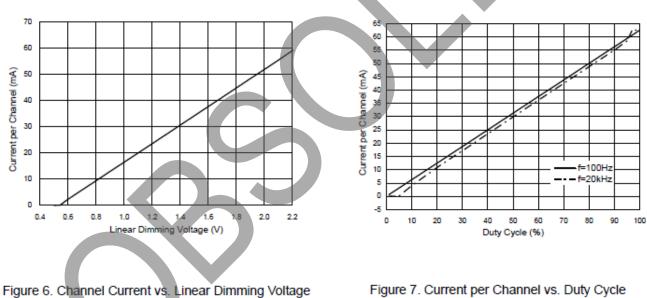
Note 5: Guaranteed by design (GBD).

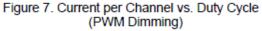

Electrical Characteristics (Cont.) (@T_A = +25°C, unless otherwise specified.)

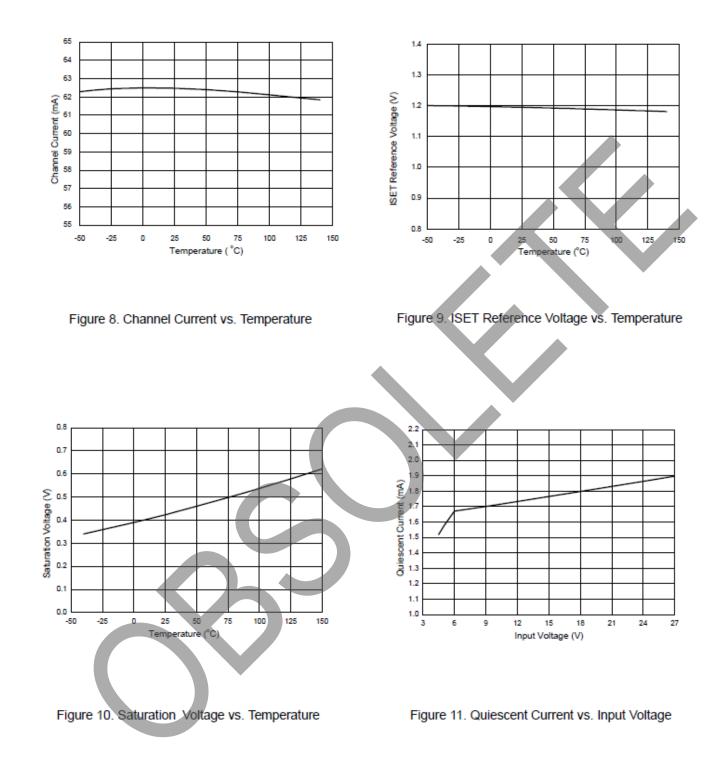

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit	
DIMMING SECTIO	-			- 71-			
PWM High Level Threshold Voltage	VIH_PWM	-	2.5	-	-	V	
PWM Low Level Threshold Voltage	VIL_PWM	-	-	-	0.3	V	
Linear Dimming Level	VL_DIM	-	0.5	-	2.2	V	
LED SHORT PROTECTION SECTION							
SCP Current	ISCP	-	10.5	12.5	14.5	μΑ	
CURRENT SINK SE	CTION						
ISET Reference Voltage	VISET	RISET=30k, CH1 to CH16 Floating $T_A = -40^{\circ}C$ to +85°C	1.170	1.194	1.218	V	
ICHX/ISET Current Multiplication Ratio	k	RISET=30k, VCHX=1V	-	1615		-	
ENABLE SECTION							
EN Pin High Level Threshold	VIH_EN	-	2.0	-	-	V	
EN Pin Low Level Threshold	VIL_EN		-	-	0.8	V	
OVP SECTION							
Threshold Voltage	VTHRESHOLD		1.130	1.194	1.250	V	
FLAG SECTION							
Saturation Voltage	VSAT	ISINK=2mA	-	-	0.3	V	
SYN SECTION							
PWM Frequency	frwm	-	0.08	-	25	kHz	
SYNF High Level Output Voltage	Vout_H	-	2.4	-	-	V	
SYNF Low Level Output Voltage	Vout_l	-	-	-	0.4	V	
FB SECTION							
Feedback Output Current	Ігв	VFB Drop to 97%	13	17	-	μΑ	
TOTAL DEVICE							
Thermal Shutdown Temperature	Totsd	CHX Pin Left Floating	-	160	-	°C	
Thermal Shutdown Hysteresis	Тнүз	-	-	20	-	°C	

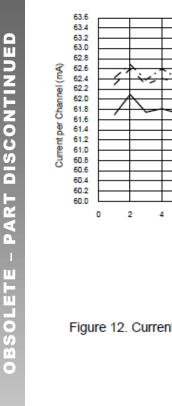


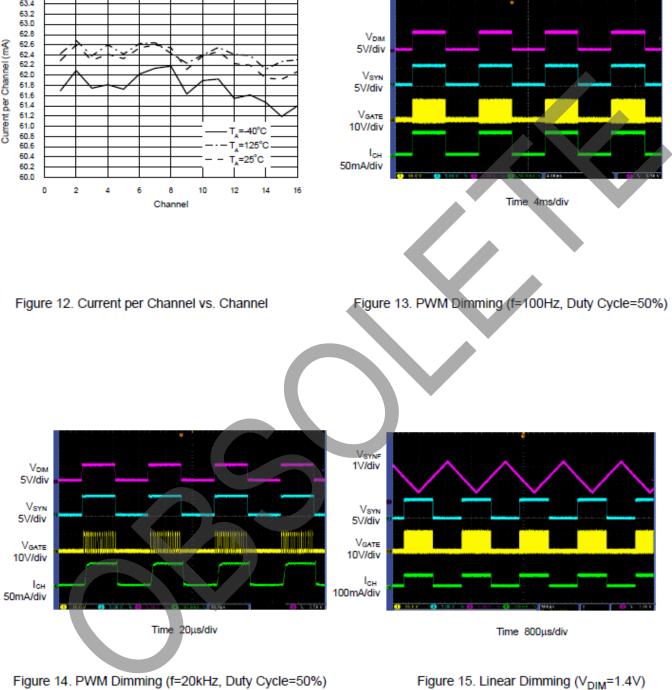
AP3616


Typical Performance Characteristics (VIN=24V, VEN=5V, RISET=30kQ,, TA=25°C, unless otherwise specified.)

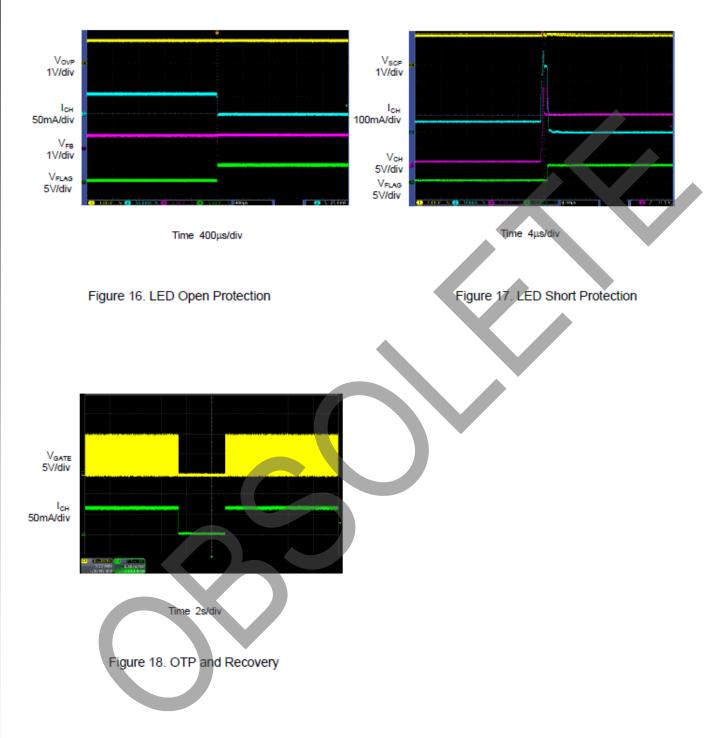







Typical Performance Characteristics (Cont.) (V_{IN}=24V, V_{EN}=5V, R_{ISET}=30kΩ,, T_A=25°C, unless otherwise specified.)

Typical Performance Characteristics (Cont.) (V_{IN}=24V, V_{EN}=5V, R_{ISET}=30kΩ,, T_A=25°C, unless otherwise specified.)



AP3616

Function Description

1. LED Current Setting

The maximum LED current per channel can be adjusted up to 75mA via ISET pin. When \geq 75mA current is needed in application, two or more channels can be paralleled to provide larger drive current. Connect a resistor RISET between ISET pin and GND to set the reference current ISET. The LED current is determined by the following equation.

$$I_{LED}(mA) = \frac{k \cdot V_{ISET}}{R_{ISET}(k\Omega)} = \frac{1560 \times 1.194}{R_{ISET}(k\Omega)}$$

2. Dimming Control

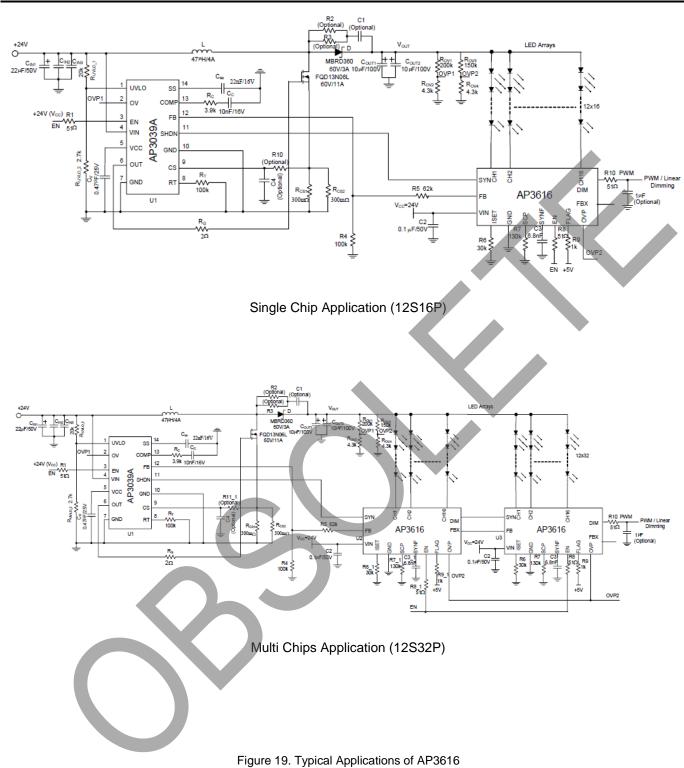
The AP3616 provides two dimming methods: external PWM signal or DC voltage input. Applying a PWM signal to DIM pin to adjust the LED current, that means, the LED current of all enabled channels can be adjusted at the same time and the LED brightness can be adjusted from 1%*ICHX_MAX to 100%*ICHX_MAX. During the high level period of PWM signal, the LED is turned on and 100% of the current flows through LED, while during the low level period of the PWM signal, the LED is turned off and almost no current flows through the LED, thus changing the average current through LED and finally adjusting LED brightness. The external PWM signal frequency applied to PWM pin is allowed to be 80Hz or higher.

3.Overvoltage Protection

The AP3616 integrates an OVP circuit. The OVP pin is connected to the center tap of voltage-divider (Rov3 and Rov4) that placed between high voltage output and GND (Figure 19). If the voltage on OVP pin exceeds 1.194V, which may results from open loop or excessive output voltage, the AP3616 will start LED open protection.

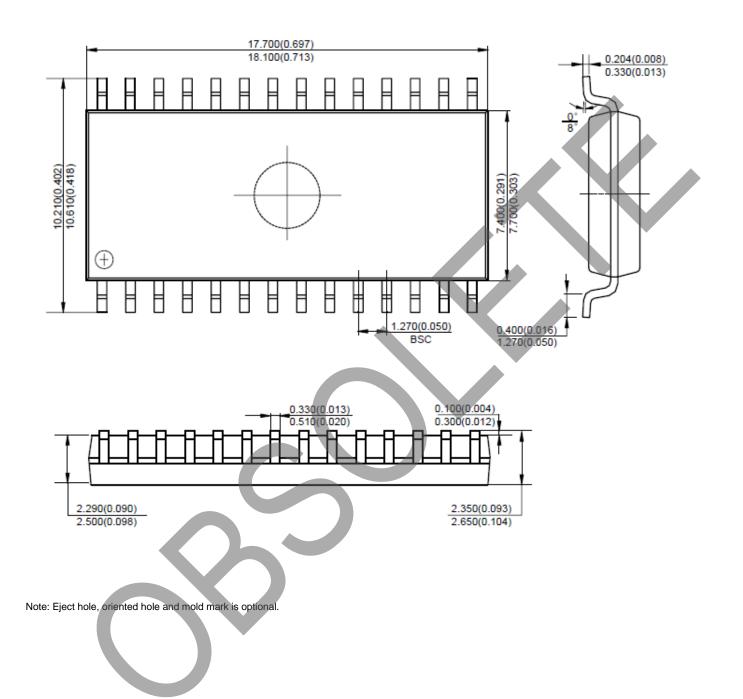
$$V_{OVP} = \frac{(R_{OV3} + R_{OV4}) \times 1.194V}{R_{OV4}}$$

4. LED Short-Circuit Protection

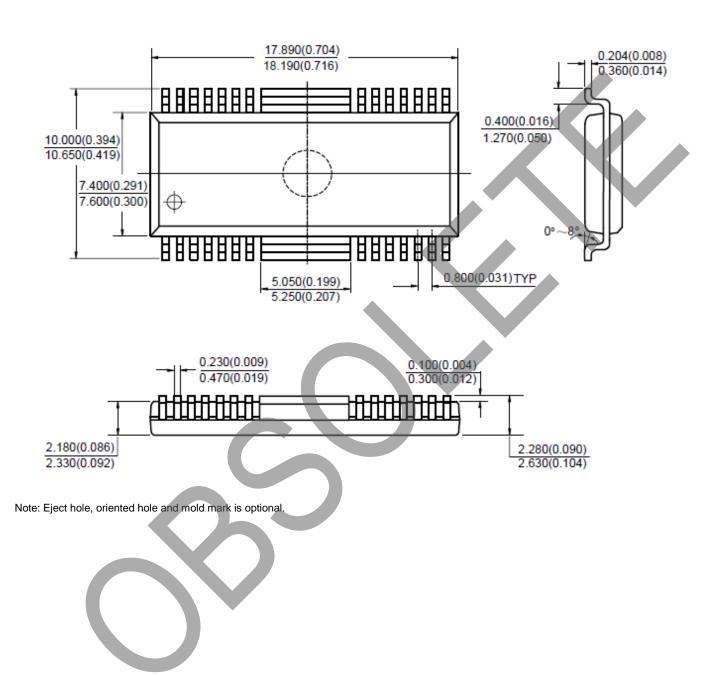

The AP3616 integrates an LED short-circuit protection circuit. During normal operation, any shortcircuited LED will cause the corresponding LED pin voltage to rise. If any LED pin voltage exceeds 8 times of the voltage at SCP pin, the corresponding LED current sink will be latched off, while the remaining string(s) keep normal operation. Toggle the VIN and/or EN to reset the latch. An internal current source was connected to this pin, a resistor connected here is used to set the shorting LED trigger voltage.

5. LED Open-Circuit Protection

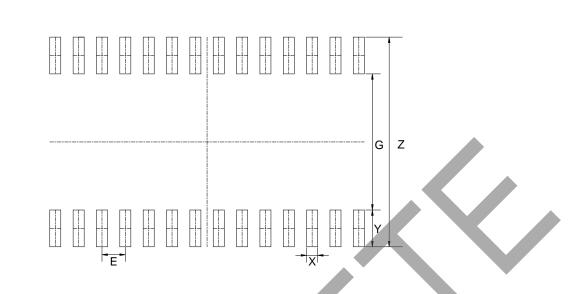
The AP3616 integrates an LED Open-Circuit Protection circuit. When any LED string is open, VOUT will boost up until the voltage at OVP pin reaches an approximate 1.194V threshold. The IC will automatically ignore the open string(s) whose CHX pin voltage is less than 100mV.


Typical Application

Mechanical Dimensions


SOIC-28 Unit: mm(inch)

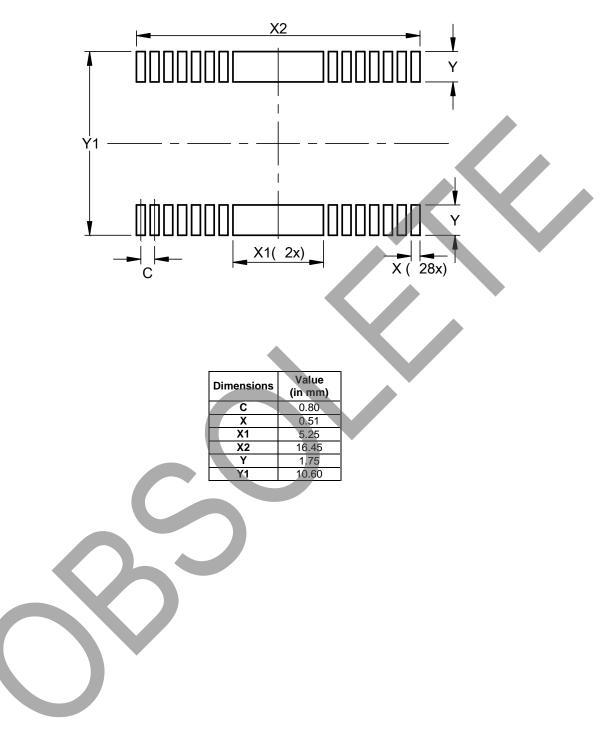
Mechanical Dimensions (Cont.)


HSOP-28 Unit: mm(inch)

Suggested Pad Layout

(1) SOIC-28

Dimensions	Z	G	X	Y	E
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	11.400/0.449	7.400/0.291	0.600/0.024	2.000/0.079	1.270/0.050



Note: The suggested land pattern dimensions have been provided for reference only, as actual pad layouts may vary depending on application. These numbers may be modified based on user equipment capability or fabrication criteria. A more robust pattern may be desired for wave soldering and is calculated by adding 0.2 mm to the 'Z' dimension. For further information, please reference document IPC-7351A, Naming Convention for Standard SMT Land Patterns, and for International grid details, please see document IEC, Publication 97.

Suggested Pad Layout (Cont.)

(2) HSOP-28

ALL DIMENSIONS ARE NOMINAL VALUES SHOWN IN MILLIMETERS

Note: The suggested land pattern dimensions have been provided for reference only, as actual pad layouts may vary depending on application. These numbers may be modified based on user equipment capability or fabrication criteria. A more robust pattern may be desired for wave soldering and is calculated by adding 0.2 mm to the 'Z' dimension. For further information, please reference document IPC-7351A, Naming Convention for Standard SMT Land Patterns, and for International grid details, please see document IEC, Publication 97.

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or

2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2019, Diodes Incorporated

www.diodes.com