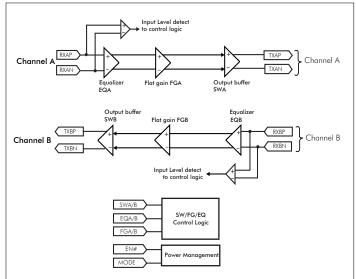


12Gbps 1 Port/2 Channels SAS3/10GE/PCIe3/SATA3 Combo ReDriver with Linear Equalization


Features

- → 12Gbps serial link with linear equalizer.
- → Two 12Gbps differential signal pairs
- → Support SAS3/10GE/PCIe3/SATA3 protocols
- → Transparent to link training, OOB, Idle
- → Pin Adjustable Receiver Equalization
- → Pin Adjustable output linear swing
- → Pin Adjustable Flat Gain
- → 100Ω Differential CML I/O's
- → Auto receiver detection for adaptive power management
- → Auto "low power" mode for adaptive power management
- → Single Supply Voltage: $3.3V \pm 0.3V$
- → Industrial Temperature range: -40°C to 85°C
- → Packaging: (Pb-free & Green)
 - ◆ 30-pin, TQFN 2.5x4.5 mm (ZL30)

Applications

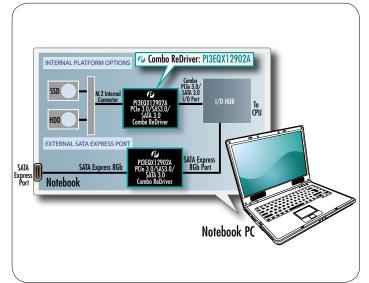
- → Notebook PC
- → Server motherboards
- → Rack server
- → JBOD storage
- → Blade server

Block Diagram

Description

PI3EQX12902A is a low power, high performance 12Gbps 2 channels SAS3/10GE/PCIe3/SATA3 linear ReDriver.

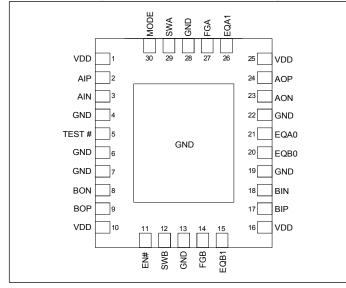
The device provides programmable equalization, linear swing and flat gain to optimize performance over a variety of physical mediums by reducing Inter-Symbol Interference. PI3EQX12902A supports two 100Ω Differential CML data I/O's between the Protocol ASIC to a switch fabric, over cable, or to extend the signals across other distant data pathways on the user's platform.


The integrated equalization circuitry provides flexibility with signal integrity of the signal before and after the ReDriver.

Each channel operates fully independently. The channels' input signal level determines whether the output is active.

The PI3EQX12902A is a flexible, multi-protocol linear ReDriver designed to support new processor chipsets with dual protocol I/O pins, supporting SAS3 12Gbps, 10GE 10Gbps, PCIe3 8Gbps, SATA3 6Gbps speeds and connectors such as mSATA/M.2/ SATAe/U.2 that can provide control signals.

The PI3EQX12902A is also an excellent choice for single lane applications requiring low power and small package such as docking station connectivity.


Application Diagram

Pin Diagram (30-pin, TQFN 2.5x4.5mm) ZL30

Pin Description (30-pin, TQFN 2.5x4.5mm)

Pin #	Pin Name	Туре	Description			
1, 10, 16, 25	VDD	Power	3.3V power supply, +/-0.3V			
27,	FGA	Input	The DC flat gain selection. 4-level input pins. With internal 100K Ω pull-up			
14	FGB	Input	resistor and $200 k\Omega$ pull-down resistor.			
29,	SWA	Input	The Output Swing selection. 4-level input pins. With internal 100K Ω pull-up resistor			
12	SWB	Input	and $200 \text{k}\Omega$ pull-down resistor.			
26, 21	EQA1, EQA0	Input	The EQ selection. 4-level input pins. With internal 100K Ω pull-up resistor and 200k Ω			
15, 20	EQB1, EQB0	Input	pull-down resistor.			
2, 3	AIP, AIN	Input	Differential input terminals. With selectable input termination between 50 Ω to VDD			
17, 18	BIP, BIN	Input	and $67k\Omega$ to VbiasRx or $67k\Omega$ to GND.			
24, 23	AOP, AON	Output	Differential output terminals. With selectable output termination between 50 Ω ,			
9, 8	BOP, BON	Output	4K to VbiasTx or Hi-Z			
			Test mode Enable pin. With internal 300k Ω pull-up resistor.			
5	TEST#	Input	"High" – Test mode disabled.			
			"Low" – Test mode enabled.			
			Channel Enable pin. With internal 300k Ω pull down resistor.			
11	EN#	Input	"High" – Channel is in power down mode.			
			"Low" – Channel is in normal operation.			
			Operation mode pin.			
30	MODE	Input	"High" – For PCIe applications.			
			"Low" – For SAS/SATA/10GE applications.			
4, 6, 7, 13, 19, 22, 28,	GND	GND	Supply Ground			
19, 22, 28, Center Pad			Supply Ground			

Power Management

Notebooks, netbooks, and other power sensitive consumer devices require judicious use of power in order to maximize battery life. In order to minimize the power consumption of our devices, Pericom has added an additional adaptive power management feature.

SAS/SATA/10GE Application mode (MODE = Low)

When a signal detector is idle for longer than 1.3ms, the corresponding channel will move to low power mode ONLY. (It means both channels will move to low power mode individually).

In the low power mode, the signal detector will still be monitoring the input channel. If a channel is in low power mode and the input signal is detected, the corresponding channel will wake-up immediately.

Power Modes

Mode	R _{IN}	R _{OUT}
PD	$67 \mathrm{K}\Omega$ to GND	HIZ
Low Power Mode	50Ω to Vdd	$4K\Omega$ to V_{DD}
Active Mode	50Ω to Vdd	50Ω to V_{DD}

PCIe Application mode (MODE = High)

When a signal detector is idle for longer than 1.3ms, the corresponding channel will move to low power mode ONLY. (It means both channels will move to low power mode individually).

In the low power mode, the signal detector will still be monitoring the input channel. If a channel is in low power mode and the input signal is detected, the corresponding channel will wake-up immediately. If a channel is in low power mode and the signal detector is idle longer than 6ms, the receiver detection loop will be active again. if load is not detected, then the Channel will move to Device Unplug Mode and monitor the load continuosly. If load is detected, it will return to Low Power Mode and reciever detection will be active again for 6ms.

Operating Modes

Mode	R _{IN}	R _{OUT}
PD	$67 \mathrm{K}\Omega$ to GND	HIZ
Unplug Mode	67Ω to V_{BIASRx}	$4K\Omega$ to V_{BIASTx}
Low Power Mode	50Ω to Vdd	$4K\Omega$ to V_{DD}
Active Mode	50Ω to Vdd	50Ω to V_{DD}

Equalization Setting:

EQA/B are the selection pins for the equalization selection

E	Q	Equalizer setting (dB)					
A1/B1	A0/B0	@1.25GHz	@2.5GHz	@3GHz	@4GHz	@5GHz	@6GHz
0	0	0.4	1.8	2.4	3.9	5.4	7.3
0	R	0.6	2.3	3.2	4.9	6.6	8.6
0	F	0.8	2.9	3.9	5.8	7.6	9.7
0	1	1.0	3.5	4.6	6.6	8.5	10.6
R	0	2.1	4.4	5.3	7.2	9.0	11.3
R	R	2.3	4.9	5.9	7.9	9.7	12.0
R	F	2.5	5.3	6.4	8.5	10.4	12.7
R	1	2.7	5.8	7.0	9.1	11.0	13.3
F	0	3.7	6.5	7.7	9.7	11.5	13.8
F	R	3.9	6.9	8.1	10.2	12	14.2
F	F	4.1	7.3	8.5	10.6	12.4	14.7
F	1	4.3	7.6	8.9	11.0	12.8	15.1
1	0	5.4	8.4	9.5	11.4	13.1	15.2
1	R	5.6	8.7	9.8	11.8	13.4	15.6
1	F	5.8	9.0	10.2	12.1	13.7	15.8
1	1	5.9	9.2	10.4	12.5	14.0	16.1

Flat Gain Setting:

FGA/B are the selection bits for the DC gain

	Flat Gain Settings
FGA/B	dB
0	-3.5
R	-1.5
F	0 (Default)
1	+1.5

-1dB compression point output Swing Setting:

SWA/B are the selection bits for the -1dB compression point output swing setting (100Mhz)

	Output Linear Swing Settings
SWA/B	mVppd
0	990
R	1050
F	1000 (Default)
1	1120

A product Line of Diodes Incorporated

PI3EQX12902A

Channel Enable Setting:

EN are the channel enable pin

Channel Enable Setting					
EN# Setting					
1	Disabled				
0	Enabled (Default)				

Test and Normal Operating Mode Setting:

TEST#	MODE	Supported Application	Supported Power Mode	Supported input trace length is VTH dependent
0	x	Active mode only (For any application)	-Active only	No
1	0	SATA3	-Active -Slumber -No RxDet	Yes
1	1	PCIe3	-Active mode -Slumber mode -Unplug mode	Yes

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

, , , , ,	0
Storage Temperature	65°C to +150°C
Supply Voltage to Ground Potential	0.5V to +4.6V
DC SIG Voltage	0.5V to V _{DD} +0.5V
Output Current	25mA to +25mA
Power Dissipation Continuous	1.0W
Operating Temperature	40°C to +85°C
Junction Temperature (Tj)	125°C
ESD, HBM	-2kV to +2kV
ESD, CDM	-500V to +500V

Note:

Stresses greater than those listed under MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Control pin Specifications

$(V_{DD} = 3.3 \pm$	$0.3V TA = -40^{\circ}C to 85^{\circ}C)$		1		
Symbol	Parameter	Min.	Typ.	Max.	Units
2-level control	pins				
V _{IH}	DC input logic High	V _{DD} *0.65			V
V _{IL}	DC input logic Low			V _{DD} *0.35	V
I _{IH}	Input High current			25	uA
I _{IL}	Input Low current	-25			uA
4-level control	pins				
V _{IH}	DC input logic "High"	0.92*VDD	V _{DD}		V
V _{IF}	DC input logic "Float"	0.59*V _{DD}	0.67*V _{DD}	0.75*V _{DD}	V
V _{IR}	DC input logic "With Rext to GND"	0.25*V _{DD}	0.33*V _{DD}	0.41*V _{DD}	V
V _{IL}	DC input logic "Low"		GND	0.08*VDD	V
I _{IH}	Input High current			50	uA
I _{IL}	Input Low current	-50			uA
Rext	External resistor connects to GND ($\pm 5\%$)	64.6	68	71.4	kΩ

High speed I/O AC/DC Specifications of PCIe mode (Mode = 1) $(V_{CC} = 3.3 \pm 0.3V, T_A = -40 \text{ to } 85^{\circ}\text{C})$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
C _{RX}	RX AC coupling capacitance			220		nF	
0	Input return loss	10MHz to 4GHz differential		14		dB	
S ₁₁		1GHz to 4GHz common mode		4.9			
2		10MHz to 4GHz differential		12.0		dB	
S ₂₂	Output return loss	1GHz to 4GHz common mode		4.8			
.	DC single-ended input impedance			50			
R _{IN}	DC Differential Input Impedance			100		Ω	
R _{OUT}	DC Differential output Impedance			100		Ω	
Z _{RX-HIZ}	DC input CM input impedance during reset or power down			67		kΩ	
V _{RX-DIFF-PP}	Differential Input Peak-to-peak Voltage	Operational			1.2	Vppd	
	Input source common-mode noise	DC – 200MHz			150	mVpp	
T _{TX-IDLE-SET-TO-} IDLE	Max time to electrical idle after sending an EIOS			4	8	ns	
T _{TX-IDLE-TO-DIFF-} data	Max time to valid diff signal after leaving electrical idle			4	8	ns	
V _{th +}	On threshold of signal detector	Signal swing @ 4GHz		100		mVppd	
V _{th} -	Off threshold of signal detector	Signal swing @ 100MHz		85		mVppd	
Vcc	Power supply voltage		3	3.3	3.6	V	
Р	Supply power	EN#=0		0.21	0.33	W	
I	Supply current			64	92	mA	
P _{idle}	Supply power	EN#=1		0.1	0.2	mW	
		EQA1/A0 = 11		12.5			
C	Peaking gain (Compensation at 4GHz, relative to 100MHz, 100mVp-p sine wave input)	EQA1/A0 = F0		9.7		dB	
Gp		EQA1/A0 = 00		3.9			
		Variation around typical	-3		+3	dB	
		FG = 1		1.5			
	$\Gamma_{\rm Let} = \frac{1}{2} \left(100 \right) \left(\Pi_{\rm Let} = \Gamma_{\rm C} \left(2.0 \right) - 1000 \right)$	FG = F		0		dB	
G _F	Flat gain (100MHz, EQ<3:0> = 1000, SW<1:0> = 10, EQx = FF, SW = F)	FG = R		-1.5		dB	
	0 ((1.0 / = 10, EQX = 11, 0 (/ = 1))	FG = 0		-3.5			
		Variation around typical	-3		+3	dB	
		SW = 1		1120			
V _{1dB_100M}	-1dB compression point of output swing	SW = F		1000		mVppd	
• 10D_1001VI	(at 100MHz)	SW = R		1050			
		SW = 0		990			

August 2017

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
		SW = 1		1.0		
V	-1dB compression point of output swing	SW = F		0.9		37. 1
V _{1dB_4G}	(at 4GHz)	SW = R		0.95		Vppd
		SW = 0		0.80		
V _{Coup}	Channel isolation	100MHz to 4GHz, Figure 1 (Note 1)		25		dB
		100MHz to 4GHz, FG<1:0> = 0, EQA1/A0 = 00, Figure 2		0.6		
Vnoise_input	Input-referred noise	100MHz to 4GHz, FG<1:0> = 1, EQA1/A0 = 11, Figure 2		0.4	1.0 0.9 VF 0.95 0.80 VF 25 d 0.6 mV 0.4 0.7	mV _{RMS}
	Output-referred noise (Note 2)	100MHz to 4GHz, FG<1:0> = 0, EQA1/A0 = 00, Figure 2		0.7		mV _{RMS}
Vnoise_output		100MHz to 4GHz, FG<1:0> = 1, EQA1/A0 = 11, Figure 2		0.9		

Note: (1) Measured using a vector-network analyzer (VNA) with -15dBm power level applied to the adjacent input. The VNA detects the signal at the output of the victim channel. All other inputs and outputs are terminated with 50Ω .

(2) Guaranteed by design and characterization.

High speed I/O AC/DC Specifications of SAS/SATA/10GE mode (MODE = 0) ($V_{CC} = 3.3 \pm 0.3V$, $T_A = -40$ to 85° C)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
C _{RX}	RX AC coupling capacitance			220		nF	
S ₁₁	Input return loss	10MHz to 3GHz differential		11.0		- dB	
		1GHz to 3GHz common mode		5.0			
\$ ₂₂	Output return loss	10MHz to 3GHz differential		11.5		- dB	
		1GHz to 3GHz common mode		4.8			
R _{IN}	DC single-ended input impedance			50		- Ω	
	DC Differential Input Impedance			100			
R _{OUT}	DC Differential output Impedance			100		Ω	
Z _{RX-HIZ}	DC input CM input impedance during reset or power down			67		kΩ	
V _{RX-DIFF-PP}	Differential Input Peak-to-peak Voltage	Operational			1.2	Vppd	
	Input source common-mode noise	DC – 200MHz			150	mVpp	
T _{TX-IDLE-SET-TO-} IDLE	Max time to electrical idle after sending an EIOS			4	8	ns	
T _{TX-IDLE-TO-DIFF-} data	Max time to valid diff signal after leaving electrical idle			4	8	ns	
Vcc	Power supply voltage		3	3.3	3.6	V	
P _{max}	Max Supply power	EN#=0		0.24	0.33	W	

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
I _{max}	Max Supply current			64	92	mA	
P _{idle}	Supply power	EN#=1		0.1	0.2	mW	
t _{pd}	Latency	From input to output		0.5		ns	
Gp	Peaking gain (Compensation at 3GHz, relative to 100MHz, 100mVp-p sine wave input)	EQA1/A0 = 11		10.4		dB	
		EQA1/A0 = F0		7.7			
		EQA1/A0 = 00		2.4			
		Variation around typical	-3		+3	dB	
G _F		FG = 1		1.5		dB	
		FG = F		0			
	Flat gain (100MHz, EQ<3:0> = 1000, SW<1:0> = 10, EQx = FF, SW = F)	FG = R		-1.5			
	500 < 1.0 > -10, EQx - FT, 500 - F)	FG = 0		-3.5			
		Variation around typical	-3		+3	dB	
V _{1dB_100M}		SW = 1		1120			
	-1dB compression point of output swing	SW = F		1000		mVppd	
	(at 100MHz)	SW = R		1050			
		SW = 0		990			
V _{1dB_6G}	-1dB compression point of output swing (at 6GHz)	SW = 1		1.0			
		SW = F		0.9		Varial	
		SW = R		0.95		Vppd	
		SW = 0		0.8			
V _{Coup}	Channel isolation	100MHz to 6GHz, Figure 1 (Note 1)		25		dB	
Vnoise_input	Input-referred noise	100MHz to 6GHz, FG = 0, EQA1/A0 = 00, Figure 2		0.6			
		100MHz to 6GHz, FG = 1, EQA1/A0 = 11, Figure 2		0.4		— mV _{RMS}	
Vnoise_output	Output-referred noise (Note 2)	100MHz to 6GHz, FG = 0, EQA1/A0 = 00, Figure 2		0.7			
		100MHz to 6GHz, FG = 1, EQA1/A0 = 11, Figure 2		0.9		mV _{RMS}	

Note:

(1) Measured using a vector-network analyzer (VNA) with -15dBm power level applied to the adjacent input. The VNA detects the signal at the output of the victim channel. All other inputs and outputs are terminated with 50Ω .

(2) Guaranteed by design and characterization.

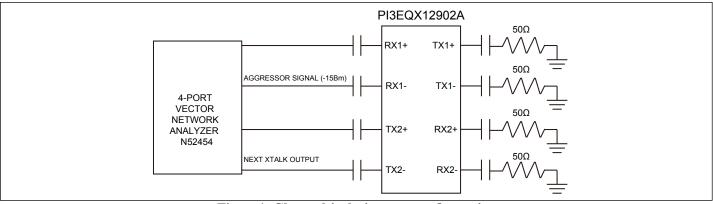


Figure1. Channel-isolation test configuration

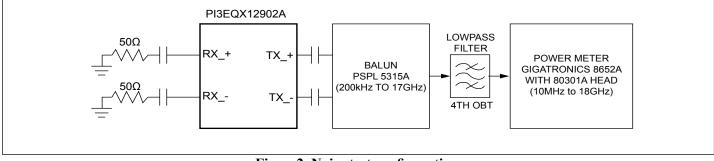
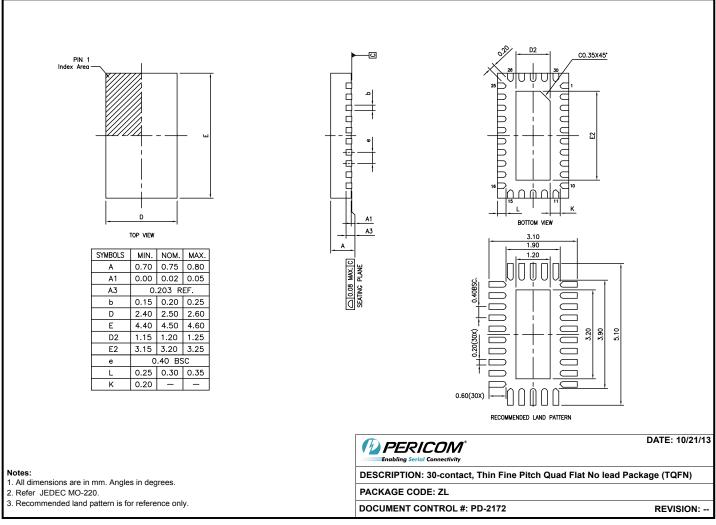



Figure2. Noise test configuration

Packaging Mechanical: 30-pin TQFN

14-0006

For latest package info.

please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Number	Package Code	Package Description
PI3EQX12902AZLEX	ZL	30-contact, Thin Fine Pitch Quad Flat No-Lead (TQFN), Tape & Reel

Notes:

· Thermal characteristics can be found on the company web site at www.diodes.com/design/support/packaging/

• E = Pb-free and Green

• Adding an X suffix = Tape/Reel

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND. EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or

2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the

failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated

www.diodes.com