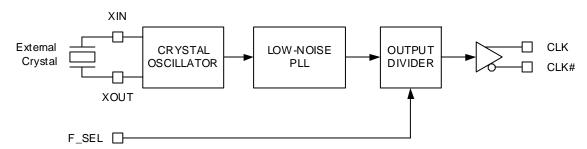


# Crystal to LVPECL Clock Generator

#### **Features**

- One LVPECL output pair
- Selectable frequency multiplication: × 2.5 or × 5
- External crystal frequency: 25.0 MHz
- Output frequency: 62.5 MHz or 125 MHz
- Low RMS phase jitter at 125 MHz, using 25 MHz crystal (1.875 MHz to 20 MHz): 0.4 ps (typical)
- Phase noise at 125 MHz (typical):


| Offset  | Noise Power |
|---------|-------------|
| 1 kHz   | -117 dBc/Hz |
| 10 kHz  | -126 dBc/Hz |
| 100 kHz | -131 dBc/Hz |
| 1 MHz   | -131 dBc/Hz |

- Pb-free 8-pin TSSOP package
- Supply voltage: 3.3 V or 2.5 V
- Commercial and Industrial temperature range

## **Functional Description**

The CY2XP22 is a PLL (Phase Locked Loop) based high performance clock generator that uses an external reference crystal. It is specifically targeted at FibreChannel and Gigabit Ethernet applications. It produces a selectable output frequency that is 2.5 or 5 times the crystal frequency. With a 25 MHz crystal, the user can select either a 62.5 MHz or 125 MHz output. It uses Cypress's low noise VCO technology to achieve less than 1 ps typical RMS phase jitter. The CY2XP22 has a crystal oscillator interface input and one LVPECL output pair.

# **Logic Block Diagram**





## Contents

| Pinouts                            | 3 |
|------------------------------------|---|
| Pin Definitions                    | 3 |
| Frequency Table                    | 3 |
| Absolute Maximum Conditions        | 4 |
| Operating Conditions               | 4 |
| DC Electrical Characteristics      | 5 |
| AC Electrical Characteristics      | 6 |
| Recommended Crystal Specifications | 6 |
| Parameter Measurements             |   |
| Application Information            |   |
| Power Supply Filtering Techniques  |   |
| Termination for LVPECL Output      |   |
| Crystal Interface                  |   |

| Ordering Information                    | 10 |
|-----------------------------------------|----|
| Ordering Code Definitions               | 10 |
| Package Drawing and Dimensions          |    |
| Acronyms                                |    |
| Document Conventions                    |    |
| Units of Measure                        | 12 |
| Document History Page                   | 13 |
| Sales, Solutions, and Legal Information |    |
| Worldwide Sales and Design Support      |    |
| Products                                |    |
| PSoC® Solutions                         | 14 |
| Cypress Developer Community             |    |
| Technical Support                       |    |



# **Pinouts**

Figure 1. 8-pin TSSOP pinout

| VDD  | 1 | 8 | VDD   |
|------|---|---|-------|
| VSS  | 2 | 7 | CLK   |
| XOUT | 3 | 6 | CLK#  |
| XIN  | 4 | 5 | F_SEL |

# **Pin Definitions**

8-pin TSSOP

| Pin Number | Pin Name  | I/O Type              | Description                           |
|------------|-----------|-----------------------|---------------------------------------|
| 1, 8       | VDD       | Power                 | 3.3 V or 2.5 V power supply           |
| 2          | VSS       | Power                 | Ground                                |
| 3, 4       | XOUT, XIN | XTAL output and input | Parallel resonant crystal interface   |
| 5          | F_SEL     | CMOS input            | Frequency Select: see Frequency Table |
| 6,7        | CLK#, CLK | LVPECL output         | Differential clock output             |

# Frequency Table

| Inp                     | Inputs PLL Multiplier Value |                      | Output Frequency (MHz)  |  |
|-------------------------|-----------------------------|----------------------|-------------------------|--|
| Crystal Frequency (MHz) | F_SEL                       | FEE Multiplier value | Output Frequency (Minz) |  |
| 25                      | 0                           | 5                    | 125                     |  |
|                         | 1                           | 2.5                  | 62.5                    |  |



## **Absolute Maximum Conditions**

| Parameter                      | Description                         | Conditions                  | Min  | Max                   | Unit |
|--------------------------------|-------------------------------------|-----------------------------|------|-----------------------|------|
| $V_{DD}$                       | Supply Voltage                      |                             | -0.5 | 4.4                   | V    |
| V <sub>IN</sub> <sup>[1]</sup> | Input Voltage, DC                   | Relative to V <sub>SS</sub> | -0.5 | V <sub>DD</sub> + 0.5 | V    |
| T <sub>S</sub>                 | Temperature, Storage                | Non operating               | -65  | 150                   | °C   |
| T <sub>J</sub>                 | Temperature, Junction               |                             | _    | 135                   | °C   |
| ESD <sub>HBM</sub>             | ESD Protection, Human Body<br>Model | JEDEC STD 22-A114-B         | 2000 | -                     | V    |
| UL-94                          | Flammability Rating                 | At 1/8 in.                  | V-   | <del>-</del> 0        |      |
| $\Theta_{JA}^{[2]}$            |                                     | 0 m/s airflow               | 10   | 00                    | °C/W |
|                                | Ambient                             | 1 m/s airflow               | 9    | )1                    |      |
|                                |                                     | 2.5 m/s airflow             | 8    | 37                    |      |

# **Operating Conditions**

| Parameter       | Description                                                                                       | Min   | Max   | Unit |
|-----------------|---------------------------------------------------------------------------------------------------|-------|-------|------|
| $V_{DD}$        | 3.3 V Supply Voltage                                                                              | 3.135 | 3.465 | V    |
|                 | 2.5 V Supply Voltage                                                                              | 2.375 | 2.625 | V    |
| T <sub>A</sub>  | Ambient Temperature, Commercial                                                                   | 0     | 70    | °C   |
|                 | Ambient Temperature, Industrial                                                                   | -40   | 85    | °C   |
| T <sub>PU</sub> | Power up time for all $V_DD$ to reach minimum specified voltage (ensure power ramps is monotonic) | 0.05  | 500   | ms   |

Document Number: 001-10229 Rev. \*G

The voltage on any input or IO pin cannot exceed the power pin during power up.
 Simulated using Apache Sentinel TI software. The board is derived from the JEDEC multilayer standard. It measures 76 x 114 x 1.6 mm and has 4-layers of copper (2/1/1/2 oz.). The internal layers are 100% copper planes, while the top and bottom layers have 50% metalization. No vias are included in the model.



# **DC Electrical Characteristics**

| Parameter            | Description                                                                 | Test Conditions                                                                                       | Min                    | Тур | Max                     | Unit |
|----------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------|-----|-------------------------|------|
| I <sub>DD</sub>      | Operating Supply Current with output unterminated                           | V <sub>DD</sub> = 3.465 V, F <sub>OUT</sub> = 125 MHz, output unterminated                            | _                      | _   | 125                     | mA   |
|                      |                                                                             | V <sub>DD</sub> = 2.625 V, F <sub>OUT</sub> = 125 MHz, output unterminated                            | _                      | -   | 120                     | mA   |
| I <sub>DDT</sub>     | Operating Supply Current with output terminated                             | V <sub>DD</sub> = 3.465 V, F <sub>OUT</sub> = 125 MHz, output terminated                              | _                      | -   | 150                     | mA   |
|                      |                                                                             | V <sub>DD</sub> = 2.625 V, F <sub>OUT</sub> = 125 MHz, output terminated                              | _                      | -   | 145                     | mA   |
| V <sub>OH</sub>      | LVPECL Output High Voltage                                                  | $V_{DD} = 3.3 \text{ V or } 2.5 \text{ V},$ $R_{TERM} = 50 \Omega \text{ to } V_{DD} - 2.0 \text{ V}$ | V <sub>DD</sub> – 1.15 | -   | V <sub>DD</sub> – 0.75  | V    |
| V <sub>OL</sub>      | LVPECL Output Low Voltage                                                   | $V_{DD} = 3.3 \text{ V or } 2.5 \text{ V},$ $R_{TERM} = 50 \Omega \text{ to } V_{DD} - 2.0 \text{ V}$ | V <sub>DD</sub> – 2.0  | -   | V <sub>DD</sub> – 1.625 | V    |
| V <sub>OD1</sub>     | LVPECL Peak-to-Peak Output Voltage Swing                                    | $V_{DD} = 3.3 \text{ V or } 2.5 \text{ V},$ $R_{TERM} = 50 \Omega \text{ to } V_{DD} - 2.0 \text{ V}$ | 600                    | -   | 1000                    | mV   |
| $V_{OD2}$            | LVPECL Output Voltage Swing (V <sub>OH</sub> – V <sub>OL</sub> )            | $V_{DD}$ = 2.5 V,<br>$R_{TERM}$ = 50 $\Omega$ to $V_{DD}$ – 1.5 V                                     | 500                    | _   | 1000                    | mV   |
| V <sub>OCM</sub>     | LVPECL Output Common Mode<br>Voltage (V <sub>OH</sub> + V <sub>OL</sub> )/2 | $V_{DD}$ = 2.5 V,<br>$R_{TERM}$ = 50 $\Omega$ to $V_{DD}$ – 1.5 V                                     | 1.2                    | -   | _                       | V    |
| V <sub>IH</sub>      | Input High Voltage, F_SEL                                                   |                                                                                                       | $0.7 \times V_{DD}$    | _   | V <sub>DD</sub> + 0.3   | V    |
| V <sub>IL</sub>      | Input Low Voltage, F_SEL                                                    |                                                                                                       | -0.3                   | _   | $0.3 \times V_{DD}$     | V    |
| I <sub>IH</sub>      | Input High Current, F_SEL                                                   | F_SEL = V <sub>DD</sub>                                                                               | _                      | _   | 115                     | μΑ   |
| I <sub>IL</sub>      | Input Low Current, F_SEL                                                    | F_SEL = V <sub>SS</sub>                                                                               | -50                    | _   | -                       | μΑ   |
| C <sub>IN</sub> [3]  | Input Capacitance, F_SEL                                                    |                                                                                                       | _                      | 15  | -                       | pF   |
| C <sub>INX</sub> [3] | Pin Capacitance, XIN & XOUT                                                 |                                                                                                       | _                      | 4.5 | -                       | pF   |

Note
3. Not 100% tested, guaranteed by design and characterization.



# **AC Electrical Characteristics**

| Parameter [4]                   | Description               | Conditions                                                                           | Min  | Тур | Max | Unit |
|---------------------------------|---------------------------|--------------------------------------------------------------------------------------|------|-----|-----|------|
| F <sub>OUT</sub>                | Output Frequency          |                                                                                      | 62.5 | -   | 125 | MHz  |
| T <sub>R</sub> , T <sub>F</sub> | Output Rise or Fall Time  | 20% to 80% of full output swing                                                      | _    | 0.5 | 1.0 | ns   |
| $T_{Jitter(\phi)}$              | RMS Phase Jitter (Random) | 125 MHz, (1.875–20 MHz)                                                              | _    | 0.4 | -   | ps   |
| T <sub>DC</sub>                 | Output Duty Cycle         | Measured at zero crossing point                                                      | 48   | 50  | 52  | %    |
| T <sub>LOCK</sub>               | Startup Time              | Time for CLK to reach valid frequency measured from the time $V_{DD} = V_{DD}(min.)$ | _    | -   | 5   | ms   |
| T <sub>LFS</sub>                | Re-lock Time              | Time for CLK to reach valid frequency from F_SEL pin change                          | -    | -   | 1   | ms   |

# **Recommended Crystal Specifications**

| Parameter [5]  | Description                  | Min   | Max    | Unit |
|----------------|------------------------------|-------|--------|------|
| Mode           | Mode of Oscillation          | Funda | mental |      |
| F              | Frequency                    | 25    | 25     | MHz  |
| ESR            | Equivalent Series Resistance | _     | 50     | Ω    |
| C <sub>0</sub> | Shunt Capacitance            | _     | 7      | pF   |

<sup>4.</sup> Not 100% tested, guaranteed by design and characterization.5. Characterized using an 18 pF parallel resonant crystal.



## **Parameter Measurements**

Figure 2. 3.3 V Output Load AC Test Circuit

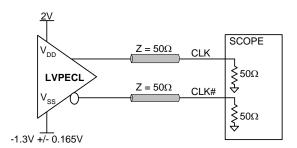



Figure 3. 2.5 V Output Load AC Test Circuit

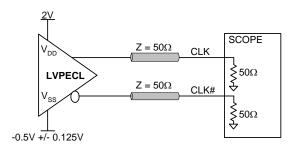



Figure 4. Output DC Parameters

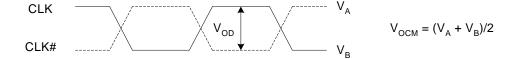
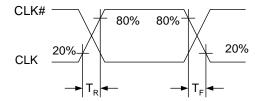




Figure 5. Output Rise and Fall Time





# Parameter Measurements (continued)

Figure 6. RMS Phase Jitter

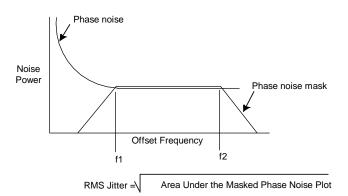
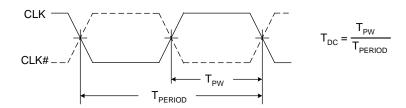
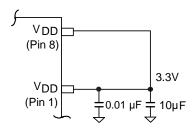




Figure 7. Output Duty Cycle

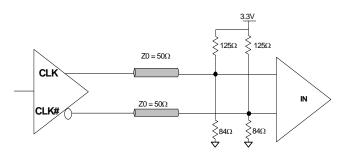





### **Application Information**

#### **Power Supply Filtering Techniques**

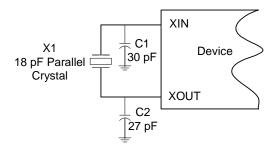
As in any high speed analog circuitry, noise at the power supply pins can degrade performance. To achieve optimum jitter performance, use good power supply isolation practices. Figure 8 illustrates a typical filtering scheme. Since all the current flows through pin 1, the resistance and inductance between this pin and the supply is minimized. A 0.01 or 0.1  $\mu$ F ceramic chip capacitor is also located close to this pin to provide a short and low impedance AC path to ground. A 1 to 10  $\mu$ F ceramic or tantalum capacitor is located in the general vicinity of this device and may be shared with other devices.


Figure 8. Power Supply Filtering



#### **Termination for LVPECL Output**

The CY2XP22 implements its LVPECL driver with a current steering design. For proper operation, it requires a 50 ohm dc termination on each of the two output signals. For 3.3 V operation, this data sheet specifies output levels for termination to  $V_{DD} = 2.0 \ \text{V}$ . This same termination voltage can also be used for  $V_{DD} = 2.5 \ \text{V}$  operation, or it can be terminated to  $V_{DD} = 1.5 \ \text{V}$ . Note that it is also possible to terminate with 50 ohms to ground (VSS), but the high and low signal levels differ from the data sheet values. Termination resistors are best located close to the destination device. To avoid reflections, trace characteristic impedance ( $Z_0$ ) should match the termination impedance. Figure 9 shows a standard termination scheme.

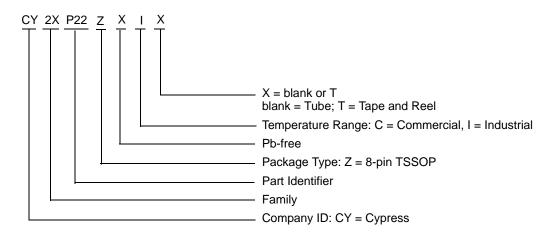

Figure 9. LVPECL Output Termination



### **Crystal Interface**

The CY2XP22 is characterized with 18 pF parallel resonant crystals. The capacitor values shown in Figure 10 are determined using a 25 MHz 18 pF parallel resonant crystal and are chosen to minimize the ppm error. Note that the optimal values for C1 and C2 depend on the parasitic trace capacitance and are thus layout dependent.

Figure 10. Crystal Input Interface






# **Ordering Information**

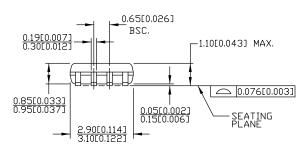
| Part Number | Package Type                | Product Flow                |
|-------------|-----------------------------|-----------------------------|
| CY2XP22ZXC  | 8-pin TSSOP                 | Commercial, 0 °C to 70°C    |
| CY2XP22ZXCT | 8-pin TSSOP – Tape and Reel | Commercial, 0 °C to 70°C    |
| CY2XP22ZXI  | 8-pin TSSOP                 | Industrial, -40 °C to 85 °C |
| CY2XP22ZXIT | 8-pin TSSOP – Tape and Reel | Industrial, -40 °C to 85 °C |

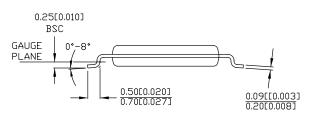
## **Ordering Code Definitions**





# **Package Drawing and Dimensions**


Figure 11. 8-pin TSSOP (4.40 mm Body) Package Outline, 51-85093




DIMENSIONS IN MMEINCHES)  $\underline{\text{MIN.}}$  MAX.

REFERENCE JEDEC MO-153

| PART #   |                |  |  |  |
|----------|----------------|--|--|--|
| Z08.173  | STANDARD PKG.  |  |  |  |
| ZZ08.173 | LEAD FREE PKG. |  |  |  |





51-85093 \*D



# Acronyms

| Acronym | Description                                |  |
|---------|--------------------------------------------|--|
| CLKOUT  | Clock Output                               |  |
| CMOS    | Complementary Metal Oxide Semiconductor    |  |
| DPM     | Die Pick Map                               |  |
| EPROM   | Erasable Programmable Read Only Memory     |  |
| LVDS    | Low-Voltage Differential Signaling         |  |
| LVPECL  | Low-Voltage Positive Emitter Coupled Logic |  |
| NTSC    | National Television System Committee       |  |
| OE      | Output Enable                              |  |
| PAL     | Phase Alternate Line                       |  |
| PD      | Power-Down                                 |  |
| PLL     | Phase Locked Loop                          |  |
| TTL     | Transistor-Transistor Logic                |  |

# **Document Conventions**

## **Units of Measure**

| Symbol | Unit of Measure             |  |  |  |
|--------|-----------------------------|--|--|--|
| °C     | degree Celsius              |  |  |  |
| kHz    | kilohertz                   |  |  |  |
| kΩ     | kilohm                      |  |  |  |
| MHz    | megahertz                   |  |  |  |
| ΜΩ     | megaohm                     |  |  |  |
| μΑ     | microampere                 |  |  |  |
| μs     | microsecond                 |  |  |  |
| μV     | microvolt                   |  |  |  |
| μVrms  | microvolts root-mean-square |  |  |  |
| mA     | milliampere                 |  |  |  |
| mm     | millimeter                  |  |  |  |
| ms     | millisecond                 |  |  |  |
| mV     | millivolt                   |  |  |  |
| nA     | nanoampere                  |  |  |  |
| ns     | nanosecond                  |  |  |  |
| nV     | nanovolt                    |  |  |  |
| Ω      | ohm                         |  |  |  |
| ppm    | parts per million           |  |  |  |
| V      | volt                        |  |  |  |



# **Document History Page**

| Revision | ECN     | Orig. of<br>Change | Submission<br>Date | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|---------|--------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **       | 506262  | RGL                | See ECN            | New data sheet                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| *A       | 838060  | RGL                | See ECN            | Changed status from Advance to Preliminary                                                                                                                                                                                                                                                                                                                                                                                                     |
| *B       | 2700242 | KVM /<br>PYRS      | 04/30/2009         | Reformatted Revised phase noise values Replaced VCC with VDD; VEE with VSS; updated pin names Removed pull-up resistor on F_SEL Corrected temperature range, added industrial temperature range Increased IDD from 120 / 100 mA to 150 / 140 mA Added CINX parameter, revised CIN parameter Revised LVPECL output specs Added thermal resistance information Changed VIL, VIH, IIL & IIH specs Revised suggested crystal load capacitor values |
| *C       | 2718898 | WWZ                | 06/15/09           | Minor ECN to post data sheet to external web                                                                                                                                                                                                                                                                                                                                                                                                   |
| *D       | 2767298 | KVM                | 09/22/09           | Add $I_{DD}$ spec for unterminated outputs Change parameter name for $I_{DD}$ (terminated outputs) from $I_{DD}$ to $I_{DDT}$ Remove $I_{DD}$ footnote about externally dissipated current Add footnote reference to $C_{IN}$ and $C_{INX}$ :not 100% tested Add max limit for $T_R$ , $T_F$ : 1.0 ns Change $T_{LOCK}$ max from 10 ms to 5 ms Split out parameter $T_{LFS}$ from $T_{LOCK}$                                                   |
| *E       | 2896121 | KVM                | 03/19/2010         | Updated Package Diagram (Figure 11)                                                                                                                                                                                                                                                                                                                                                                                                            |
| *F       | 3219081 | BASH               | 04/07/2011         | Changed status from preliminary to final. Added ordering code definitions. Updated package diagram to *C. Added Acronyms, and Units of Measure. Template and style updates as per current Cypress standards.                                                                                                                                                                                                                                   |
| *G       | 4336622 | XHT                | 05/02/2014         | spec 51-85093 – Changed revision from *C to *D. Updated in new template. Completing Sunset Review.                                                                                                                                                                                                                                                                                                                                             |



## Sales, Solutions, and Legal Information

#### Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

#### **Products**

Automotive Clocks & Buffers Interface

**Lighting & Power Control** 

Memory PSoC Touch Sensing USB Controllers Wireless/RF cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/plc cypress.com/go/memory cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless

### PSoC® Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

#### **Cypress Developer Community**

Community | Forums | Blogs | Video | Training

#### **Technical Support**

cypress.com/go/support

© Cypress Semiconductor Corporation, 2006-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.