

16-Mbit (2048K x 8) MoBL® Static RAM

Features

Very high speed: 55 ns and 70 ns
 Wide voltage range: 2.20V – 3.60V

· Ultra-low active power

Typical active current: 2 mA @ f = 1 MHz
 Typical active current: 15 mA @ f = f_{max}

· Ultra-low standby power

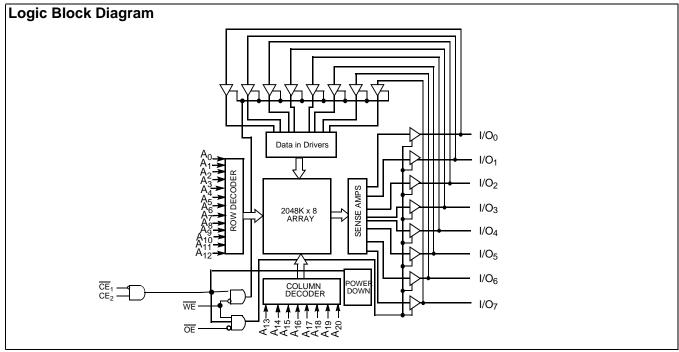
• Easy memory expansion with \overline{CE}_1 , \overline{CE}_2 and \overline{OE} features

· Automatic power-down when deselected

CMOS for optimum speed/power

• Packages offered in a 48-ball FBGA

Functional Description[1]


The CY62168DV30 is a high-performance CMOS static RAMs organized as 2048Kbit words by 8 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption. The device can be put into standby mode reducing power consumption by 90% when

addresses are not toggling. The device can be put into standby mode reducing power consumption by more than 99% when deselected Chip Enable 1 ($\overline{\text{CE}}_1$) HIGH or Chip Enable 2 ($\overline{\text{CE}}_2$) LOW. The input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when: deselected Chip Enable 1 ($\overline{\text{CE}}_1$) HIGH or Chip Enable 2 ($\overline{\text{CE}}_2$) LOW, outputs are disabled ($\overline{\text{OE}}$ HIGH), or during a write operation ($\overline{\text{Chip}}$ Enable 1 ($\overline{\text{CE}}_1$) LOW and Chip Enable 2 ($\overline{\text{CE}}_2$) HIGH and $\overline{\text{WE}}$ LOW).

Writing to the device is accomplished by taking Chip Enable 1 (\overline{CE}_1) LOW and Chip Enable 2 (\overline{CE}_2) HIGH and Write Enable (WE) input LOW. Data on the eight I/O pins (I/O_0) through I/O_7 is then written into the location specified on the address pins (A_0) through A_{20} .

Reading from the device is accomplished by taking Chip Enable 1 (\overline{CE}_1) and Output Enable (\overline{OE}) LOW and Chip Enable 2 (\overline{CE}_2) HIGH while forcing Write Enable (\overline{WE}) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is des<u>elected</u> ($\overline{\text{CE}}_1$ LOW and $\overline{\text{CE}}_2$ HIGH), the <u>outputs</u> are disabled ($\overline{\text{OE}}$ HIGH), or during a write operation ($\overline{\text{CE}}_1$ LOW and $\overline{\text{CE}}_2$ HIGH and $\overline{\text{WE}}$ LOW). See the truth table for a complete description of read and write modes.

Note:

1. For best-practice recommendations, please refer to the Cypress application note entitled System Design Guidelines, available at http://www.cypress.com.

Pin Configuration^[2]

FBGA Top View 1 2 3 4 5 6 (DNU ŌE A_0 A_1 CE₂ Α (DNU (DNU A_3 В DNU (DNU С I/Q_0 A_5 A_6 Vss A₁₇ I/O₅ D I/O₁ 1/Q₆ (DNU Vcc 1/02 A₁₆ V_{SS} Е F (I/O₃ DNU A_{14} A_{15} (DNU 1/07 A_{12} DNU A_{20} A_{13} WE DNU) G A_{10} Н

Product Portfolio

							Power	Dissipatio	n	
						Operating	J I _{CC} (mA)			
	٧c	C Range ((V)	Speed	f = 1	MHz	f = 1	max	Standby	' I _{SB2} (μ A)
Product	Min.	Typ. ^[3]	Max.	(ns)	Typ. ^[3]	Max.	Typ. ^[3]	Max.	Typ. ^[3]	Max.
CY62168DV30L	2.2	3.0	3.6	55	2	4	15	30	2.5	30
				70			12	25		
CY62168DV30LL	2.2	3.0	3.6	55	2	4	15	30	2.5	22
				70			12	25		

Notes:

2. DNU pins have to be left floating or tied to V_{SS} to ensure proper application.

3. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied-55°C to +125°C Supply Voltage to Ground Potential-0.3V to $V_{\rm CC(max)}$ + 0.3V DC Voltage Applied to Outputs in High-Z State [4, 5]-0.3V to $V_{\rm CC(max)}$ + 0.3V

DC Input Voltage ^[4, 5]	$-0.3V$ to $V_{CC(max)} + 0.3V$
Output Current into Outputs (LOW))20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

Range	Ambient Temperature (T _A) ^[6]	V cc ^[7]
Industrial	–40°C to +85°C	2.2V - 3.6V

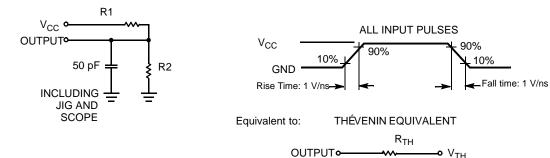
DC Electrical Characteristics (Over the Operating Range)

					CY62168DV30-55		30-55	5 CY62168DV30-70			
Parameter	Description	Test Con	ditions		Min.	Typ. [3]	Max.	Min.	Typ. [3]	Max.	Unit
V _{OH}	Output HIGH Voltage	$2.2 \le V_{CC} \le 2.7$	$I_{OH} = -0.1$	1 mA	2.0			2.0			V
		$2.7 \le V_{CC} \le 3.6$	$I_{OH} = -1.0$) mA	2.4			2.4			
V _{OL}	Output LOW Voltage	$2.2 \le V_{CC} \le 2.7$	$I_{OL} = 0.1$	mΑ			0.4			0.4	V
		$2.7 \le V_{CC} \le 3.6$	I _{OH} = 2.1	mΑ			0.4			0.4	V
V _{IH}	Input HIGH Voltage	2.2 ≤ V _{CC} ≤ 2.7			1.8		V _{CC} + 0.3	1.8		V _{CC} + 0.3	,,
		2.7 ≤ V _{CC} ≤ 3.6			2.2		V _{CC} + 0.3	2.2		V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage	2.2 ≤ V _{CC} ≤ 2.7			-0.3		0.6	-0.3		0.6	V
		2.7 ≤ V _{CC} ≤ 3.6			-0.3		0.8	-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$			-1		+1	-1		+1	μΑ
l _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$	Output disa	abled	-1		+1	-1		+1	μΑ
I _{CC}	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = 3.6$	5V,		15	30		12	25	mA
	Current	f = 1 MHz $I_{OUT} = 0$ mA, CMOS level			2	4		2	4		
I _{SB1}	Automatic CE	$\overline{CE}_{1} \ge V_{CC} - 0.2$	/, CE ₂ ≤	L		2.5	30		2.5	30	μΑ
	Power-down Current — CMOS Inputs	0.2 V, $V_{\text{IN}} \ge V_{\text{CC}} - 0.2$ V, $V_{\text{IN}} \le 0.2$ V, $f = f_{\text{MAX}}$ (Address and Data Only), $f = 0$ (OE, WE)		LL		2.5	22		2.5	22	
I _{SB2}	Automatic CE			L		2.5	30		2.5	30	μΑ
	Power-down Current— CMOS Inputs				2.5	22		2.5	22		

Thermal Resistance

Parameter	Description	Test Conditions	BGA	Unit
Θ_{JA}	Thermal Resistance ^[8] (Junction to Ambient)	Still Air, soldered on a 3 x 4.5 inch, four-layer printed circuit board	55	°C/W
$\Theta_{\sf JC}$	Thermal Resistance ^[8] (Junction to Case)		16	°C/W

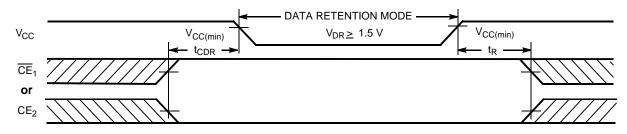
Notes:


- $4.V_{IL(min)} = -0.2V$ for pulse durations less than 20 ns.
- $5.V_{IH(max)} = V_{CC} + 0.75V$ for pulse durations less than 20 ns.
- 6.T_A is the "Instant-On" case temperature.
- 7. Full device AC operation assumes a 100 μ s ramp time from 0 to V_{CC} (min) and 100 μ s wait time after V_{CC} stabilization.
- 8. Tested initially and after any design or process changes that may affect these parameters.

Capacitance^[8]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ.)}$	10	pF

AC Test Loads and Waveforms



Parameters	2.50V	3.0V	Unit
R1	16600	1103	Ω
R2	15400	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.2	1.75	V

Data Retention Characteristics (Over the Operating Range)

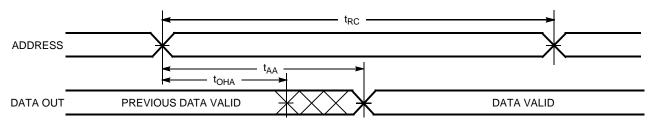
Parameter	Description	Conditions	Min.	Typ. ^[3]	Max.	Unit
V_{DR}	V _{CC} for Data Retention		1.5		3.6	V
I _{CCDR}	Data Retention Current	$V_{CC} = 1.5V$			15	μА
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			10	μΑ
t _{CDR} ^[8]	Chip Deselect to Data Retention Time		0			ns
t _R ^[9]	Operation Recovery Time		t _{RC}			ns

Data Retention Waveform

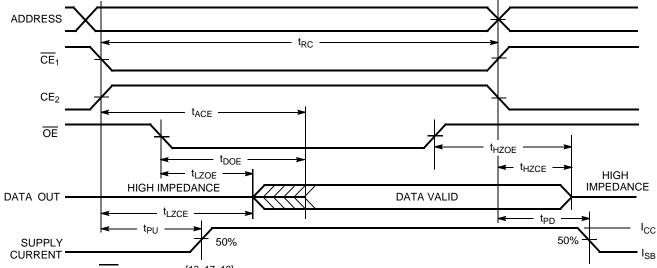
Note:

9. Full Device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 100 \, \mu s$ or stable at $V_{CC(min.)} \ge 100 \, \mu s$.

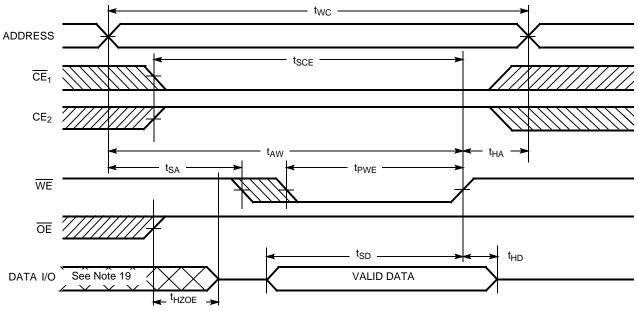
Switching Characteristics Over the Operating Range [10]


		55	ns	70	ns	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle		<u>'</u>	•	•	1	•
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low Z ^[11]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[11, 12]		20		25	ns
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to Low Z ^[11]	10		10		ns
t _{HZCE}	CE ₁ HIGH or CE ₂ LOW to High Z ^[11, 12]		20		25	ns
t _{PU}	CE ₁ LOW and CE ₂ HIGH to Power-Up	0		0		ns
t _{PD}	CE ₁ HIGH or CE ₂ LOW to Power-Down		55		70	ns
Write Cycle ^[13]		<u>'</u>	•	•		
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to Write End	40		60		ns
t _{AW}	Address Set-Up to Write End	40		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	40		45		ns
t _{SD}	Data Set-Up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High Z ^[11, 12]		20		25	ns
t _{LZWE}	WE HIGH to Low Z ^[11]	10		10		ns

<sup>Notes:
10. Test conditions for all parameters other than tri-state parameters assume signal transition time of 3ns or less (1V/ns), timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} as shown in the "AC Test Loads and Waveforms" section.
11. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} for any given device.
12. t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the outp<u>uts enter</u> a high impedance state.
13. The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.</sup>

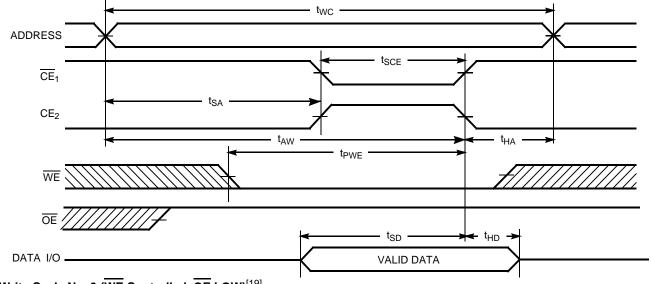


Switching Waveforms

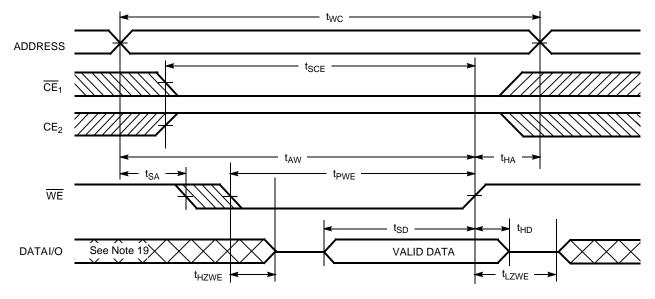

Read Cycle No. 1 (Address Transition Controlled)^[14, 15]

Read Cycle No. 2 (OE Controlled)[15, 16]

Write Cycle No. 1 (WE Controlled)[13, 17, 18]


- 14. <u>Device</u> is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, $CE_2 = V_{IH}$.
- 15. WE is HIGH for read cycle.
- 16. Address valid prior to or coincident with \overline{CE}_1 transition LOW and CE_2 transition HIGH.
- 17. Data I/O is high impedance if $\overline{OE} = V_{IH}$.

 18. If \overline{CE}_1 goes HIGH or \overline{CE}_2 goes LOW simultaneously with \overline{WE} HIGH, the output remains in high-impedance state.
- 19. During this period, the I/Os are in output state and input signals should not be applied.



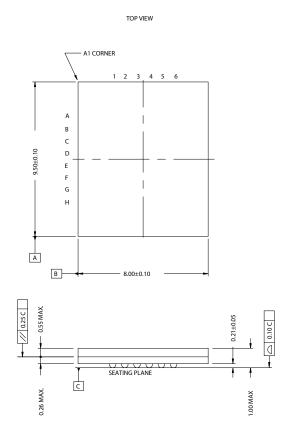
Switching Waveforms (continued)

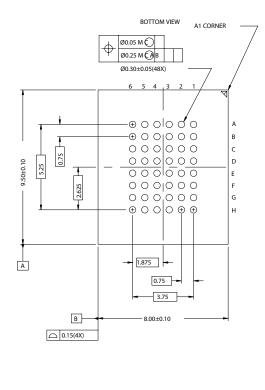
Write Cycle No. 2 ($\overline{\text{CE}}_1$ or CE_2 Controlled)[13, 17, 18]

Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[19]

Truth Table

CE ₁	CE ₂	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	X	X	High Z	Deselect/Power-down	Standby (I _{SB})
Х	L	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	Data Out (I/O ₀ -I/O ₇)	Read	Active (I _{CC})
L	Н	Н	Н	High Z	Output Disabled	Active (I _{CC})
L	Н	L	Х	Data in (I/O ₀ -I/O ₇)	Write	Active (I _{CC})




Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62168DV30L-55BVXI	BV48B	48-ball Fine Pitch BGA (8.0 x 9.5 x 1.0 mm) (Pb-Free)	Industrial
	CY62168DV30LL-55BVXI	BV48B	48-ball Fine Pitch BGA (8.0 x 9.5 x 1.0 mm) (Pb-Free)	
70	CY62168DV30L-70BVXI	BV48B	48-ball Fine Pitch BGA (8.0 x 9.5 x 1.0 mm) (Pb-Free)	Industrial
	CY62168DV30LL-70BVXI	BV48B	48-ball Fine Pitch BGA (8.0 x 9.5 x 1.0 mm) (Pb-Free)	

Package Diagrams

48-Lead VFBGA (8 x 9.5 x 1 mm) BV48B

51-85178-**

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All product and company names mentioned in this document are trademarks of their respective holders.

Document History Page

	Document Title: CY62168DV30 MoBL [®] 16-Mbit (2048K x 8) Static RAM Document Number: 38-05329									
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change						
**	118409	09/30/02	GUG	New Data Sheet						
*A	123693	02/05/03	DPM	Changed Advance Information to Preliminary Added package diagram						
*B	126556	04/24/03	DPM	Minor change: Change sunset owner from DPM to HRT						
*C	132869	01/15/04	XRJ	Changed Preliminary to Final						
*D	272589	See ECN	PCI	Updated Final data sheet and added Pb-free package.						
*E	335864	See ECN	PCI	Removed redundant packages from Ordering Information Table Added Address A ₂₀ to ball G2 in the Pin Configuration						