

32K x 9 Static RAM

Features

- High speed
 - -- 20 ns
- Automatic power-down when deselected
- Low active power
 - --- 965 mW
- Low standby power
 - -- 220 mW
- · CMOS for optimum speed/power
- TTL-compatible inputs and outputs
- Easy memory expansion with CE₁, CE₂, and OE features

Functional Description

The CY7C188 is a high-performance CMOS static RAM organized as 32,768 words by 9 bits. Easy memory expansion is provided by an active-LOW chip enable (CE₁), an active-HIGH chip enable (CE₂), an active-LOW output enable (OE), and three-state drivers. The device has an automatic power-down feature that reduces power consumption by more than 75% when deselected.

Writing to the device is accomplished by taking CE_1 and write enable (WE) inputs LOW and CE_2 input HIGH. Data on the nine I/O pins (I/O₀ – I/O₈) is then written into the location specified on the address pins (A₀ – A₁₄).

Reading from the device is accomplished by taking \overline{CE}_1 and \overline{OE} LOW while forcing \overline{WE} and \overline{CE}_2 HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the $1/\overline{O}$ pins.

The nine input/output pins (I/O₀ - I/O₈) are placed in a high-impedance state when the device is deselected (\overline{CE}_1 HIGH or \overline{CE}_2 LOW), the outputs are disabled (\overline{OE} HIGH), or during a write operation (\overline{CE}_1 LOW, \overline{CE}_2 HIGH, and \overline{WE} LOW).

The CY7C188 is available in standard 300-mil-wide DIPs and SOJs.

A die coat is used to ensure alpha immunity.

Selection Guide

	_	7C188-20	7C188-25	7C188~35
Maximum Access Time (ns)		20	25	35
Maximum Operating	Commercial	170	165	160
Current (mA)	Military		175	160
Maximum Standby Current (mA)		35	35	30

Shaded area contains preliminary information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature -65° C to $+150^{\circ}$ C

Ambient Temperature with Power Applied55°C to +125°C

Supply Voltage on V_{CC} Relative to GND

(Pin 32 to Pin 16) -0.5V to +7.0VDC Voltage Applied to Outputs in High Z State [1] -0.5V to V_{CC} + 0.5V

Static Discharge Voltage	>2001
Latch-Un Current	>200 m.A

Operating Range

Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	5V ± 10%
Military ^[2]	-55°C to +125°C	5V ± 10%

Electrical Characteristics Over the Operating Range^[3]

		Test Conditions		7C18	88-20	7C18	8-25	7C18	8-35	1
Parameter	Description			Min.	Max.	Min.	Max.	Min.	Max.	Uni
V _{OH}	Output HIGH Voltage	V_{CC} = Min., I_{OH} = -4.0 mA		2.4		2.4	_	2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0 \text{ mA}$	$V_{CC} = Min., I_{OL} = 8.0 \text{ mA}$		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage				V _{CC} + 0.3	2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	v
V _{IL}	Input LOW Voltage ^[1]			-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_CC$		-5	+5	-5	+5	-5	+5	μА
l _{OZ}	Output Leakage Current	$\begin{array}{l} \text{GND} \leq V_I \leq V_{CC}, \\ \text{Output Disabled} \end{array}$		-5	+5	-5	+5	-5	+5	μА
I _{OS}	Output Short Circuit Current ^[4]	$V_{CC} = Max., V_{OUT} = GND$			-300		-300		-300	mA
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max.,$	Com'l		170		165		160	mA
	Supply Current	$I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC}$	Mil				175		170	
I _{SBI}	Automatic CE Power-Down	Max. V_{CC} , $\overline{CE}_1 \ge V_{IH}$ or $CE_2 \le V_{IL}$,	Com'l		35		35		30	mA
	Current — TTL Inputs	$V_{IN} \ge V_{IH} \text{ or } V_{IN} \le V_{IL},$ $f = f_{MAX}$	Mil				35		30	mA
I _{SB2}	Automatic CE Power-Down Current	Max. V_{CC} , $\overrightarrow{CE}_1 \ge V_{CC}$ -0.3V or $CE_2 \le 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$	Com'l		15		15		15	mΑ
	- CMOS Inputs	or $V_{IN} \le 0.3V$, $f = 0$	Mil				20		20	mΑ

Shaded areas contain preliminary information.

- 1. Minimum voltage is equal to -2.0V for pulse durations less than 20 ns.
- 2. TA is the "instant on" case temperature.
- See the last page of this specification for Group A subgroup testing information.
- 4. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN} : Addresses	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{IN} : Controls		$V_{CC} = 5.0V$	8	pF
C _{OUT}	Output Capacitance		8	pF

AC Test Loads and Waveforms[6, 7]

Equivalent to:

THÉVENIN EQUIVALENT

167Ω OUTPUT • -o 1.73V

Note:
5. Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics Over the Operating Range[3,6]

		7C18	38-20	7C188-25		7C188-35		op
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLE	3						•	
t _{RC}	Read Cycle Time	20		25		35		ns
t _{AA}	Address to Data Valid		20		25		35	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE ₁ LOW or CE ₂ HIGH to Data Valid		20		25		35	ns
t _{DOE}	OE LOW to Data Valid		9		10		16	ns
t _{LZOE}	OE LOW to Low Z ^[8]	0		3		3		ns
t _{HZOE}	OE HIGH to High Z ^[7, 8]		9		11		15	ns
t _{LZCE}	CE ₁ LOW or CE ₂ HIGH to Low Z ^[8]	3		3		3		ns
t _{HZCE}	CE ₁ HIGH or CE ₂ LOW to High Z ^[7, 8]		9		11		15	ns
tpU	CE ₁ LOW or CE ₂ HIGH to Power-Up	0		0		0		ns
tpD	CE ₁ HIGH or CE ₂ LOW to Power-Down		20		20		20	ns
WRITE CYCI	E[9, 10]	•	•			•	•	
twc	Write Cycle Time	20		25		35		ns
¹ SCE	CE ₁ LOW or CE ₂ HIGH to Write End	15		18		22		ns
t _{AW}	Address Set-Up to Write End	15		20		30		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	15		18		22		ns
t _{SD}	Data Set-Up to Write End	10		10		15		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{HZWE}	WE LOW to High Z ^[7]	0	7	0	11	0	15	ns
t _{LZWE}	WE HIGH to Low Z ^[7, 8]	3		3		3		ns

- Notes:

 6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- t_{HZOF} , t_{HZCF} , and t_{HZWE} are specified with $C_L = 5$ pF as in part (b) of AC Test Loads. Transition is measured ± 500 mV from steady-state
- At any given temperature and voltage condition, tHZCE is less than tLZCE: tHZOE is less than tLZOE, and tHZWE is less than tLZWE for any given device.
- The internal write time of the memory is defined by the overlap of $\overline{CE}_1,$ LOW, CE₂ HIGH, and \overline{WE} LOW. All three signals must be asserted to initiate a write and any signal can terminate a write by being deasserted. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
- 10. The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of tHZWE and tSD.

Switching Waveforms

Read Cycle No. 1[11, 12]

Read Cycle No. 2 (Chip-Enable Controlled)[12, 13, 14]

Write Cycle No. 1 (WE Controlled)[9, 14, 15, 16]

Notes:

- 11. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 12. WE is HIGH for read cycle.
- 13. Address valid prior to or coincident with CE transition LOW.
- 14. Timing parameters are the same for all chip enable signals (\overline{CE}_1 and CE_2), so only the timing for \overline{CE}_1 is shown.
- 15. Data I/O is high impedance if OE = V_{IH}.
 16. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 2 (CE Controlled) (continued) [9, 14, 15, 16]

Write Cycle No. 3 (\overline{WE} Controlled, \overline{OE} LOW)[10, 14, 16]

Truth Table

CE	WE	ŌĒ	Input/Output	Mode	Power
H	Х	X	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Deselect, Output Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
20	CY7C188-20PC	P31	32-Lead (300-Mil) Molded DIP	Commercial
	CY7C188-20VC	V32	32-Lead (300-Mil) Molded SOJ	
25	CY7C188-25PC	P31	32-Lead (300-Mil) Molded DIP	Commercial
	CY7C188-25VC	V32	32-Lead (300-Mil) Molded SOJ	_
	CY7C188-25DMB	D32	32-Lead (300-Mil) CerDIP	Military
35	CY7C188-35PC	P31	32-Lead (300-Mil) Molded DIP	Commercial
	CY7C188-35VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C188-35DMB	D32	32-Lead (300-Mil) CerDIP	Military

Shaded areas contain preliminary information.

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL} Max.	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3
I _{SB1}	1, 2, 3
I _{SB2}	1, 2, 3

Switching Characteristics

Parameter	Subgroups					
READ CYCLE						
t _{RC}	7, 8, 9, 10, 11					
t _{AA}	7, 8, 9, 10, 11					
t _{OHA}	7, 8, 9, 10, 11					
t _{ACE}	7, 8, 9, 10, 11					
t _{DOE}	7, 8, 9, 10, 11					
WRITE CYCLE						
twc	7, 8, 9, 10, 11					
t _{SCE}	7, 8, 9, 10, 11					
t _{AW}	7, 8, 9, 10, 11					
t _{HA}	7, 8, 9, 10, 11					
t _{SA}	7, 8, 9, 10, 11					
t _{PWE}	7, 8, 9, 10, 11					
t _{SD}	7, 8, 9, 10, 11					
t _{HD}	7, 8, 9, 10, 11					

Document #: 38-00220-C