2N5356 # SILICON PNP TRANSISTOR www.centralsemi.com # **DESCRIPTION:** The CENTRAL SEMICONDUCTOR 2N5356 is a silicon PNP transistor, manufactured by the epitaxial planar process, designed for general purpose amplifier and switching applications. | MAXIMUM RATINGS: (T _A =25°C) | SYMBOL | | UNITS | |--|-----------------------------------|-------------|-------| | Collector-Base Voltage | V_{CBO} | 25 | V | | Collector-Emitter Voltage | VCEO | 25 | V | | Emitter-Base Voltage | V_{EBO} | 4.0 | V | | Continuous Collector Current | IC | 350 | mA | | Peak Collector Current | I _{CM} | 700 | mA | | Power Dissipation | P_{D} | 360 | mW | | Operating and Storage Junction Temperature | T _J , T _{stg} | -65 to +150 | °C | | Storage Junction Temperature | ^I J ^{, I} stg | -65 to +150 | | 30 | |---|--|--|---|---| | CHARACTERISTICS: (TA=25°C u | ınless otherwise | noted) | | | | TEST CONDITIONS | MIN | TYP | MAX | UNITS | | | | | | nA | | OB · // | | | 10 | μA | | V _{CE} =25V | | | 100 | nA | | V _{EB} =4.0V | | | 10 | μΑ | | I _C =10mA | 25 | | | V | | I _C =50mA, I _B =2.5mA | | | 250 | mV | | I _C =300mA, I _B =30mA | | | 1.0 | V | | I _C =50mA, I _B =2.5mA | | | 1.1 | V | | I_C =300mA, I_B =30mA | | | 2.0 | V | | V_{CE} =10V, I_{C} =2.0mA | 500 | | 800 | mV | | V_{CE} =10V, I_{C} =2.0mA | 200 | | | | | V_{CE} =1.0V, I_{C} =50mA | 250 | | 500 | | | V_{CE} =5.0V, I_{C} =300mA | 75 | | | | | V_{CE} =10V, I_{C} =2.0mA, f=1.0kHz | 200 | | 750 | | | V_{CE} =10V, I_{C} =2.0mA | | 250 | | MHz | | V_{CB} =10V, I_E =0, f=1.0MHz | | | 8.0 | pF | | V_{EB} =0.5V, I_{C} =0, f=1.0MHz | | | 35 | pF | | | CHARACTERISTICS: (T _A =25°C to TEST CONDITIONS V _{CB} =25V V _{CB} =25V V _{CB} =25V V _{EB} =4.0V I _C =10mA I _C =50mA, I _B =2.5mA I _C =300mA, I _B =30mA I _C =50mA, I _B =2.5mA I _C =300mA, I _B =2.5mA I _C =300mA, I _C =300mA V _{CE} =10V, I _C =2.0mA V _{CE} =10V, I _C =2.0mA V _{CE} =1.0V, I _C =50mA V _{CE} =5.0V, I _C =300mA V _{CE} =10V, I _C =2.0mA, f=1.0kHz V _{CE} =10V, I _C =2.0mA | CHARACTERISTICS: (T _A =25°C unless otherwise TEST CONDITIONS V _{CB} =25V V _{CB} =25V (T _A =100°C) V _{CE} =25V V _{EB} =4.0V I _C =10mA 25 I _C =50mA, I _B =2.5mA I _C =300mA, I _B =30mA I _C =300mA, I _B =30mA I _C =300mA, I _B =2.5mA I _C =300mA, I _C =2.0mA 500 V _{CE} =10V, I _C =2.0mA 200 V _{CE} =10V, I _C =2.0mA 200 V _{CE} =1.0V, I _C =50mA 250 V _{CE} =5.0V, I _C =300mA 75 V _{CE} =10V, I _C =2.0mA 200 V _{CE} =10V, I _C =2.0mA 200 V _{CE} =10V, I _C =2.0mA 75 V _{CE} =10V, I _C =2.0mA 100 =10V | CHARACTERISTICS: (T _A =25°C unless otherwise noted) TEST CONDITIONS WIN V _{CB} =25V V _{CB} =25V V _{CE} =25V V _{EB} =4.0V I _C =10mA I _C =50mA, I _B =2.5mA I _C =300mA, I _B =30mA I _C =50mA, I _B =2.5mA I _C =300mA, I _B =2.5mA I _C =300mA, I _C =2.0mA I _C =10V, I _C =2.0mA V _{CE} =10V, I _C =2.0mA V _{CE} =10V, I _C =2.0mA V _{CE} =1.0V, I _C =50mA V _{CE} =5.0V, I _C =300mA V _{CE} =10V, I _C =2.0mA CE=10V, I _C =2.0mA CE=10V, I _C =2.0mA | CHARACTERISTICS: (T _A =25°C unless otherwise noted) TEST CONDITIONS V _{CB} =25V V _{CB} =25V V _{CE} =25V 100 =10MA 25 I _C =50mA, I _B =2.5mA 250 I _C =50mA, I _B =30mA 1.0 I _C =50mA, I _B =2.5mA 1.1 I _C =300mA, I _B =30mA 2.0 V _{CE} =10V, I _C =2.0mA 200 V _{CE} =10V, I _C =2.0mA 200 V _{CE} =10V, I _C =2.0mA 250 V _{CE} =10V, I _C =300mA 75 V _{CE} =10V, I _C =2.0mA 250 | # 2N5356 # SILICON PNP TRANSISTOR # **TO-92 CASE - MECHANICAL OUTLINE** | DIMENSIONS | | | | | | | |------------|--------|-------|-------------|------|--|--| | | INCHES | | MILLIMETERS | | | | | SYMBOL | MIN | MAX | MIN | MAX | | | | A (DIA) | 0.175 | 0.205 | 4.45 | 5.21 | | | | В | 0.170 | 0.210 | 4.32 | 5.33 | | | | С | 0.500 | - | 12.70 | - | | | | D | 0.016 | 0.022 | 0.41 | 0.56 | | | | E | 0.100 | | 2.54 | | | | | F | 0.050 | | 1.27 | | | | | G | 0.125 | 0.165 | 3.18 | 4.19 | | | | Н | 0.080 | 0.105 | 2.03 | 2.67 | | | | | 0.015 | | 0.38 | | | | TO-92 (REV: R1) # LEAD CODE: - 1) Emitter 2) Collector 3) Base R1 ## MARKING: **FULL PART NUMBER** ## **OUTSTANDING SUPPORT AND SUPERIOR SERVICES** #### PRODUCT SUPPORT Central's operations team provides the highest level of support to insure product is delivered on-time. - Supply management (Customer portals) - · Inventory bonding - · Consolidated shipping options - · Custom bar coding for shipments - · Custom product packing #### **DESIGNER SUPPORT/SERVICES** Central's applications engineering team is ready to discuss your design challenges. Just ask. - Free guick ship samples (2nd day air) - Online technical data and parametric search - SPICE models - · Custom electrical curves - · Environmental regulation compliance - · Customer specific screening - · Up-screening capabilities - Special wafer diffusions - PbSn plating options - Package details - Application notes - · Application and design sample kits - Custom product and package development ## REQUESTING PRODUCT PLATING - 1. If requesting Tin/Lead plated devices, add the suffix "TIN/LEAD" to the part number when ordering (example: 2N2222A TIN/LEAD). - 2. If requesting Lead (Pb) Free plated devices, add the suffix "PBFREE" to the part number when ordering (example: 2N2222A PBFREE). ### **CONTACT US** ## Corporate Headquarters & Customer Support Team Central Semiconductor Corp. 145 Adams Avenue Hauppauge, NY 11788 USA Main Tel: (631) 435-1110 Main Fax: (631) 435-1824 Support Team Fax: (631) 435-3388 www.centralsemi.com Worldwide Field Representatives: www.centralsemi.com/wwreps **Worldwide Distributors:** www.centralsemi.com/wwdistributors For the latest version of Central Semiconductor's **LIMITATIONS AND DAMAGES DISCLAIMER**, which is part of Central's Standard Terms and Conditions of sale, visit: www.centralsemi.com/terms www.centralsemi.com (001)