2381 66. 5...1/PTCCL..H....BE

Vishay BCcomponents

30 V to 60 V PTC Thermistors For Overload Protection

FEATURES

- Wide range of trip and non-trip currents: From 94 mA up to 2 A for the trip current
- Small ratio between trip and non-trip currents (I_t/I_{nt} = 1.5 at 25 °C) High maximum overload current (up to 23 A)

- RoHS COMPLIANT
- · Leaded parts withstand mechanical stresses and vibration
- UL file E148885 according to XGPU standard UL1434
- UL approved PTCs are guaranteed to withstand severe test programs
 - Long-life cycle tests (over 5000 trip cycles)
 - Long-life storage tests (3000 h at 250 °C)
 - · Electrical cycle tests at low ambient temperatures (- 40 °C or 0 °C)
 - Damp-heat and water immersion tests
 - · Overvoltage tests at up to 200 % of rated voltage
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC

APPLICATIONS

Over-temperature/over-load protection:

- Telecommunications
- · Automotive systems
- Industrial electronics
- Consumer electronics
- · Electronic data processing

DESCRIPTION

These directly heated thermistors have a positive temperature coefficient and are primarily intended for overload protection. They consist of a naked disk with two tinned brass or copper clad steel leads and are coated with a high temperature silicone UL 94 V-0 coating. Leadless disks and leaded disks without coating are available on request.

MOUNTING

The PTC Thermistors are suitable for processing on automatic insertion equipment.

Typical soldering

235 °C; duration: 5 s (Pb-bearing) 245 °C, duration: 5 s (Lead (Pb)-free)

Resistance to soldering heat

260 °C. duration: 10 s max.

MARKING

Only the grey lacquered thermistors with a diameter of 8.5 mm to 20.5 mm are marked with BC, R₂₅ value (example 1R9) on one side and Int, Vmax. on the other side.

QUICK REFERENCE DATA			
PARAMETER	VALUE	UNIT	
Maximum voltage (DC or AC)	30 to 60	V	
Holding current	0.094 to 2	А	
Resistance at 25 °C (R ₂₅)	0.3 to 50	Ω	
I _{max.}	0.8 to 23	А	
Switch temperature	140	°C	
Operating temperature range at max. voltage	- 40 to + 85	°C	
Climatic category	40/125/56		

2381 66. 5...1/PTCCL..H....BE

30 V to 60 V PTC Thermistors For Overload Protection

Notes

⁽¹⁾ The thermistors are clamped at the seating plane.

 $^{(2)}$ I_{max.} is the maximum overload current that may flow through the PTC when it passes from the low ohmic to the high ohmic state. UL approval: I_{max.} x 0.85

SAP AND 12NC PART NUMBERS			
12NC	SAP CODING	12NC	SAP CODING
2381 660 x9491	PTCCL05H940EyE	2381 662 x6111	PTCCL11H611DyE
2381 660 x1311	PTCCL05H131EyE	2381 662 x7011	PTCCL11H701DyE
2381 660 x1811	PTCCL05H181DyE	2381 662 x8311	PTCCL13H831DyE
2381 660 x2711	PTCCL05H271DyE	2381 662 x9211	PTCCL13H921DyE
2381 661 x3211	PTCCL07H321DyE	2381 663 51121	PTCCL17H112DBE
2381 661 x4111	PTCCL07H411DyE	2381 663 51321	PTCCL17H132DBE
2381 661 x4711	PTCCL09H471DyE	2381 664 51721	PTCCL21H172DBE
2381 661 x5411	PTCCL09H541DyE	2381 664 52021	PTCCL21H202DBE

Notes

• For bulk parts replace x by "5" and y by "B"

· For taped on reel parts replace it x by "6" and y by "T"

CURRENT DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE

30 V to 60 V PTC Thermistors For Overload Protection

Vishay BCcomponents

VOLTAGE DERATING AS A FUNCTION OF AMBIENT TEMPERATURE

ELECTRICAL CHARACTERISTICS Imax. AS A FUNCTION OF VOLTAGE

I_{max.} as stated in the electrical data and ordering information tables, is the maximum overload current that may flow through the PTC when passing from the low ohmic to high ohmic state at rated voltage.

When other voltages are present after tripping, the I_{max} value can be derived from the above I_{max} as a function of voltage graph. Voltages below V_{rated} will allow higher overload currents to pass the PTC.

TYPICAL TRIP-TIME AS A FUNCTION OF TRIP CURRENT RATIO

Curve 1: \emptyset D_{max.} = 20.5 mm Curve 2: \emptyset D_{max.} = 16.5 mm Curve 3: \emptyset D_{max.} = 12.5 mm Curve 4: \emptyset D_{max.} = 10.5 mm Curve 5: \emptyset D_{max.} = 8.5 mm Curve 6: \emptyset D_{max.} = 7.0 mm Curve 7: \emptyset D_{max.} = 5.0 mm Measured in accordance with *"IEC 60738"*.

Trip-time or switching time (t_s)

To check the trip-time for a specific PTC, refer to the Electrical Data and Ordering Information tables for the value I_{nt} . Divide the overload or trip current by this I_{nt} and you realize the factor I_t/I_{nt} . This rule is valid for any ambient temperature between 0 °C and 70 °C. Adapt the correct non-trip current with the appropriate curve in the Current Deviation as a Function of the Ambient Temperature graph. The relationship between the I_t/I_{nt} factor and the switching time is a function of the PTC diameter; see the above graphs.

Example

What will be the trip-time at I_{ol} = 3 A and T_{amb} = 0 °C of a thermistor type 2381 661 54711; 2.5 Ω ; Ø D_{max.} = 8.5 mm: I_{nt} from the table: 470 mA at 25 °C

 I_{nt} : 470 x 1.12 = 526 mA (at 0 °C).

Overload current = 3 A; factor I_t/I_{nt} : ${}^{3}/_{0.526}$ = 5.70. In the typical trip-time as a function of trip current ratio graph, at the 8.5 mm line and I_t/I_{nt} = 5.70, the typical trip-time is 1.7 s.

2381 66. 5...1/PTCCL..H....BE

Vishay BCcomponents

30 V to 60 V PTC Thermistors For Overload Protection

PONENTS OUTLINE				
CODE N	IUMBER 2381	SPQ	OUTLINE	
660	51	500	Fig. 1a	
	61	1500	Fig. 1b	
661	51	250	Fig. 1a	
	61	1500	Fig. 1b	
662	51	250	Fig. 1a	
	66111 to 67011	1500	Fig. 1b	
	68311 to 69211	750	Fig. 1b	
663	51	200	Fig. 1a	
664	51	100	Fig. 1a	

PTC THERMISTORS IN BULK

DIMENSIONS OF BULK TYPE PTC'S (in mm		
D	See table	
d	0.6 ± 10 %	
Т	4.0 max.	
H2	4.0 ± 1.0	
НЗ	D + 5 max.	
L1	20 min.	
F	5.0	

SHAY

PTC THERMISTORS ON TAPE ON REEL

TAPE AND REEL ACCORDING TO IEC 60286-2 dimensions in millimeters			
SYMBOL	PARAMETER	DIMENSIONS	TOLERANCE
D	Body diameter	See table	max.
d	Lead diameter	0.6	± 10 %
Р	Pitch of components Diameter < 12 mm Diameter \ge 12 mm	12.7 25.4	± 1.0 ± 2.0
P ₀	Feedhole pitch	12.7	± 0.3
F	Leadcenter to leadcenter distance (between component and tape)	5.0	+ 0.6 - 0.1
H0	Lead wire clinch height	16.0	± 0.5
H2	Component bottom to seating plane	4.0	± 1.0
H3	Component top to seating plane	D + 5	max.
Т	Total thinkness	4.0	max.

30 V to 60 V PTC Thermistors For Overload Protection Vishay BCcomponents

TYPICAL RESISTANCE/TEMPERATURE CHARACTERISTIC

TYPICAL RESISTANCE/TEMPERATURE CHARACTERISTIC

TYPICAL RESISTANCE/TEMPERATURE CHARACTERISTIC

TYPICAL RESISTANCE/TEMPERATURE CHARACTERISTIC

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.