

BENEFITS OF USING CAPACITOR ARRAYS

AVX capacitor arrays offer designers the opportunity to lower placement costs, increase assembly line output through lower component count per board and to reduce real estate requirements.

Reduced Costs

Placement costs are greatly reduced by effectively placing one device instead of four or two. This results in increased throughput and translates into savings on machine time. Inventory levels are lowered and further savings are made on solder materials, etc.

Space Saving

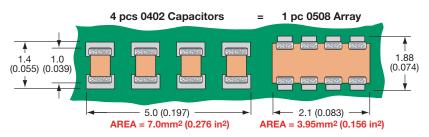
Space savings can be quite dramatic when compared to the use of discrete chip capacitors. As an example, the 0508 4-element array offers a space reduction of >40% vs. 4 x 0402 discrete capacitors and of >70% vs. 4 x 0603 discrete capacitors. (This calculation is dependent on the spacing of the discrete components.)

Increased Throughput

Assuming that there are 220 passive components placed in a mobile phone:

A reduction in the passive count to 200 (by replacing discrete components with arrays) results in an increase in throughput of approximately 9%.

A reduction of 40 placements increases throughput by 18%.


For high volume users of cap arrays using the very latest placement equipment capable of placing 10 components per second, the increase in throughput can be very significant and can have the overall effect of reducing the number of placement machines required to mount components:

If 120 million 2-element arrays or 40 million 4-element arrays were placed in a year, the requirement for placement equipment would be reduced by one machine.

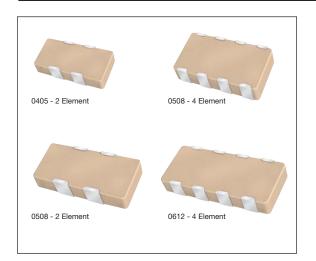
During a 20Hr operational day a machine places 720K components. Over a working year of 167 days the machine can place approximately 120 million. If 2-element arrays are mounted instead of discrete components, then the number of placements is reduced by a factor of two and in the scenario where 120 million 2-element arrays are placed there is a saving of one pick and place machine.

Smaller volume users can also benefit from replacing discrete components with arrays. The total number of placements is reduced thus creating spare capacity on placement machines. This in turn generates the opportunity to increase overall production output without further investment in new equipment.

W2A (0508) Capacitor Arrays

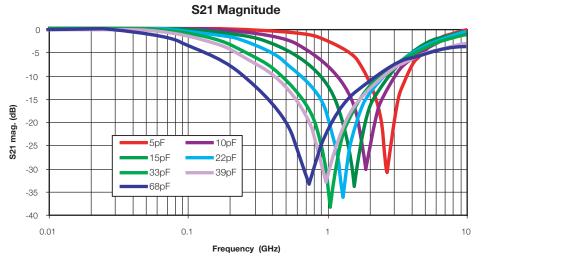
The 0508 4-element capacitor array gives a PCB space saving of over 40% vs four 0402 discretes and over 70% vs four 0603 discrete capacitors.

W3A (0612) Capacitor Arrays


4 pcs 0603 Capacitors = 1 pc 0612 Array 2.3 1.5 (0.091) (0.059) (0.0236) AREA = 13.8mm² (0.543 in²) AREA = 6.4mm² (0.252 in²)

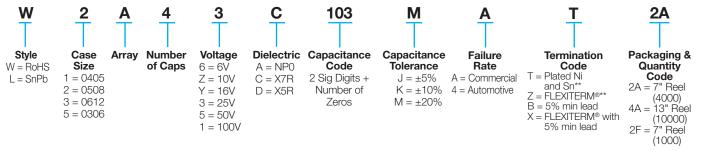
The 0612 4-element capacitor array gives a PCB space saving of over 50% vs four 0603 discretes and over 70% vs four 0805 discrete capacitors.

Capacitor Array (IPC)



GENERAL DESCRIPTION

AVX is the market leader in the development and manufacture of capacitor arrays. The smallest array option available from AVX, the 0405 2-element device, has been an enormous success in the Telecommunications market. The array family of products also includes the 0612 4-element device as well as 0508 2-element and 4-element series, all of which have received widespread acceptance in the marketplace.


AVX capacitor arrays are available in X5R, X7R and NP0 (COG) ceramic dielectrics to cover a broad range of capacitance values. Voltage ratings from 6.3 Volts up to 100 Volts are offered. AVX also now offers a range of automotive capacitor arrays qualified to AEC-Q200 (see separate table).

Key markets for capacitor arrays are Mobile and Cordless Phones, Digital Set Top Boxes, Computer Motherboards and Peripherals as well as Automotive applications, RF Modems, Networking Products, etc.

AVX Capacitor Array - W2A41A***K

HOW TO ORDER

**RoHS compliant

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

Capacitance Range – NP0/C0G

5	SIZE				05	08			050	08		0612						
# Elements				1	2				4			4						
	oldering		R		Reflow	/Wave			- Reflow	Wave		Reflow/Wave						
	ckaging				All P					nbosse	d	Paper/Embossed						
Length		mm		00 ± 0.15				± 0.15			1.30 ±					± 0.150		
		(in.)	(0.0			± 0.006	5)			0.006)				± 0.00	·			
Width		mm (in.)	1.			± 0.15 ± 0.006	:)		2.10 ±	0.15 0.006)				± 0.20				
Max.		mm	(0.0	0.66	,0)			94	<i>'</i>)	(0	± 000	,		(0.126 ± 0.008) 1.35				
	Thickness (in.)			(0.026)				037)			(0.0)			(0.053)				
-	WVDC		16	25	50	16	25	50	100	16	25	50	100	16	25	50	100	
1R0	Cap	1.0																
1R2 1R5	(pF)	1.2 1.5																
1R3		1.3																
2R2		2.2																
2R7		2.7																
3R3		3.3																
3R9 4R7		3.9 4.7																
5R6		5.6																
6R8		6.8																
8R2		8.2																
100 120		10 12																
150		15																
180		18																
220		22																
270 330		27 33																
390		39																
470		47																
560		56																
680 820		68 82																
101		100																
121		120																
151		150																
181 221		180 220																
271		270																
331		330																
391		390																
471 561		470																
681		560 680																
821		820																
102		1000																
122 152		1200 1500																
182		1800												<u> </u>				
222	2	2200																
272		2700																
332		3300																
392 472		3900 1700																
562		5600																
682	6	6800																
822	8	3200																

Capacitance Range – X7R/X5R

SIZE		0306	405	0508	8050	908	12																						
SIZE 0306 04050508050806 # Elements 4					1-		2				2						4						4						
Soldering		Reflow Only				Reflow Only					Reflow/Wave						Reflow/Wave						Reflow/Wave						
Р	ackagin	ıg			Paper				All Pap				All Paper								nboss			Paper/Embossed					
Length	ı	mm (in.)	$\begin{array}{c} 1.60 \pm 0.15 \\ (0.063 \pm 0.006) \\ 0.81 \pm 0.15 \end{array}$			1.00 ± 0.15					1.30 ± 0.15 (0.051 ± 0.006) 2.10 ± 0.15						1.30 ± 0.15 (0.051 ± 0.006) 2.10 ± 0.15						1.60 ± 0.150 (0.063 ± 0.006)						
14C 111		mm				(0.039 ± 0.006) 1.37 ± 0.15																	(± 0.00	,			
Width (in.)			.032 :	± 0.00		(0.054 ± 0.006)					2.10 ± 0.15 (0.083 ± 0.006)								E 0.00					.126 ±	± 0.00				
Max. mm Thickness (in.)				50		0.66 (0.026)					0.94 (0.037)						0.94						1.35 (0.053)						
WVDC		(in.)	6	10	020) 16	25	6	10	16	25	50	6	10	16	25	50	100	6	10	(0.0 16	25	50	100	6	10	16	25	50	100
	Cap	100	///		10	20	l –	10	10	20	00		10	10	20	00	100		10	10	20	00	100		10	10	20	00	100
121	(pF)	120																											
151 181		150 180	$\langle\!\!\!//$	$\langle / /$		<u> </u>						-						<u> </u>						<u> </u>					
221		220																											
271		270	$\langle / /$																										
331 391		330 390																											
471		470																											
561		560																											
681 821		680 820	$\langle / /$																										
102		1000									<u> </u>																		
122		1200																											
152 182		1500 1800	H	H							-							<u> </u>											
222		2200																											
272		2700		///																									
332 392		3300 3900																											
472		4700																											
562		5600																											
682 822		6800 8200																											
	Сар	0.010																											
	(μF)	0.012																											
153 183		0.015	-								-																		-
223		0.022																											
273 333		0.027																											
333 393		0.033 0.039																											
473		0.047																											
563 683		0.056 0.068																											
823		0.082																											
104		0.10																							111	///			
124 154		0.12 0.15																											
184		0.18																								///			
224 274		0.22 0.27																											
334		0.27	-					1	-		-													///		H			-
474		0.47																1///											
564 684		0.56							-		-				-									H	HA				
684 824		0.68 0.82																											
105		1.0																	-										
125 155		1.2 1.5																											
185		1.8																											
225		2.2										///												///					
335 475		3.3 4.7																											
106		10																											
226 476		22 47																											
476		100					1					1																	

= Currently available X7R

= Currently available X5R

= Under development X7R, contact factory for advance samples

= Under development X5R, contact factory for advance samples

