AFBR-TUS500Z

Transparent Jacket Plastic Optical Fiber

Data Sheet

Cable description

The AFBR-TUS500Z plastic fiber optic cable is constructed of a single step-index fiber sheathed in a transparent polyethylene jacket. The cable is supplied in spools of 500m.

Figure 1. Typical POF attenuation vs. wavelength

Features

- Compatible with Avago Versatile Link Family of connectors and fiber optic components
- 1.0/2.2 mm diameter Plastic Optical Fiber (POF) with 0.21dB/m typical attenuation (-40°C to 85°C)
- PMMA core
- Fluorinated polymer cladding
- Transparent polyethylene jacket
- Halogen free

Applications

- Arc flash event detection
- Light detection

Figure 2. AFBR-TUS500Z structure

Plastic Optical Fiber Specifications: AFBR-TUS500Z

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Note
Recommended storage Temperature	Ts	-55	+85	°C	
Recommended Operating Temperature	To	-40	+85	°C	
Recommended Installation Temperature	Ti	0	+70	°C	1
Short Term Tensile Force	F _T		50	N	2, 3
Long Term Tensile Load	FT		1	N	2, 4
Bend Radius	r	30		mm	5, 6, 7
Humidity range	Н		85	%	

Mechanical Characteristics, $T_A = -40^{\circ}$ C to $+85^{\circ}$ C unless otherwise specified

Parameter		Symbol	Min.	Тур.	Max.	Unit	Note	
Numerical Aperture		NA		0.48			8	
Diameter Core and Cladding		DC	0.94	1.00	1.06	mm		
Diameter Jacket		DJ	2.13	2.20	2.27	mm		
Refractive Index	Core	n		1.492				
	Cladding			1.412				
Mass per Unit Length				3.7		g/m	9	

Optical Characteristics, $T_A = -40^{\circ}$ C to $+85^{\circ}$ C unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Cable Attenuation Source: 650nm, LED, NA=0.5 (Source: AFBR-1529Z)	α0	0.16	0.21	0.26	dB/m	
Capturing constant	С		3E-9		m	10
Propagation delay constant	l/v		5		ns/m	11

Notes:

1. Installation temperature is the range over which the cable can be bent and pulled without damage. Below 0°C the cable becomes brittle and should not be subjected to mechanical stress.

2. Fail criteria for tensile force test: elongation higher than 5% of original length.

- 3. Short term: 30mins.
- 4. Long term: 24hours
- 5. Bend angle is 90°. Bend radius is the radius of the mandrel around which the cable is bent.
- 6. Fail criteria for bend radius test: increase in attenuation higher than 0.5dB.
- 7. Test duration: 24hours.
- 8. Fiber length longer than 2 meters
- 9. Without connectors
- 10. The optical power P at the photo detector can be calculated as P = C * L * E / K with;
 - P: Optical power on detector [W]
 - C: Capturing constant [m]
 - L: Illuminated length of fiber [m]
 - E: Optical power density in illuminated area [W/m²], halogen lamp used as light source
 - K: Correction factor for transmission losses [1], calculated as: K=10^(A*L2/10)
 - A: Transmission loss [dB/m]
 - L2: Length of fiber between illuminated area and photo detector [m], i.e. wiring length.
 - * Capturing constant determined with a fiber length of 12m.
- 11. Propagation delay constant is the reciprocal of the group velocity for propagation delay of optical power. Group velocity is v=c/n, where c is the velocity of light in free space (3x10⁸ m/s) and n is the effective core index of refraction.

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2015 Avago Technologies. All rights reserved. AV02-4965EN - July 6, 2015

