ASMT-Mx00 # Moonstone[™] 1 W Power LED Light Source # **Data Sheet** ## Description The MoonstoneTM 1W Power LED Light Source is a high performance energy efficient device which can handle high thermal and high driving current. The exposed pad design has excellent heat transfer from the package to the motherboard. The low profile package design is suitable for a wide variety of applications especially where height is a constraint. The package is compatible with reflow soldering process. This will give more freedom and flexibility to the light source designer. ### **Applications** - Portable (flash light, bicycle head light) - Reading light - Architectural lighting - Garden lighting - Decorative lighting ### **Features** - Available in Red, Amber, Green, and Blue color. - Energy efficient - Exposed pad for excellent heat transfer - Suitable for reflow soldering process - High current operation - Long operation life - Wide viewing angle - Silicone encapsulation - ESD Class HBM Class 3B (threshold > 8 kV) - MSL 2A for InGaN products - MSL 4 for AllnGaP products ### **Specifications** - AllnGaP technology for Red and Amber - 2.1V (typ) at 350mA for AllnGaP - InGaN technology for Green and Blue - 3.2V (typ) at 350mA for InGaN # **Package Dimensions** ### Notes: - 1. All dimensions are in millimeters. - 2. Tolerance is ± 0.1 mm, unless otherwise specified. - 3. Metal slug is connected to anode for electrically non-isolated option. ## Device Selection Guide ($T_i = 25$ °C) | | | Luminous Flux, $\phi_{V}^{[1,2]}$ (lm) | | | Test Current | Dice | |-----------------|-------|--|------|-------|--------------|------------| | Part Number | Color | Min. | Тур. | Max. | (mA) | Technology | | ASMT-MR00-AHJ00 | Red | 33.0 | 40.0 | 56.0 | 350 | AlInGaP | | ASMT-MA00-AGH00 | Amber | 25.5 | 35.0 | 43.0 | 350 | AlInGaP | | ASMT-MA00-AHJ00 | | 33.0 | 40.0 | 56.0 | 350 | AllnGaP | | ASMT-MG00-NJK00 | Green | 43.0 | 60.0 | 73.0 | 350 | InGaN | | ASMT-MG00-NLM00 | | 73.0 | 85.0 | 124.0 | 350 | InGaN | | ASMT-MB00-NDF00 | Blue | 11.5 | 15.0 | 25.5 | 350 | InGaN | #### Notes - 1. ϕ_v is the total luminous flux output as measured with an integrating sphere at 25 ms mono pulse condition. - 2. Flux tolerance is \pm 10%. # **Part Numbering System** #### Note: 1. For selection details, see page 8. # Absolute Maximum Ratings (T $_{\!\scriptscriptstyle A} = 25~^\circ\text{C})$ | AllnGaP | InGaN | Units | |-----------------|--|---| | 350 | 350 | mA | | 1000 | 1000 | mA | | 805 | 1225 | mW | | 125 | 110 | °C | | -40 to +115 | -40 to +100 | °C | | -40 to +120 | -40 to +120 | °C | | | See Figure 17 | | | Not recommended | | | | | 350
1000
805
125
-40 to +115 | 350 350
1000 1000
805 1225
125 110
-40 to +115 -40 to +100
-40 to +120 See Figure 17 | ## Notes: - 1. DC forward current derate linearly based on Figure 5 for AllnGaP and Figure 13 for InGaN. - 2. Pulse condition duty factor = 10%, Frequency = 1 kHz. - ${\it 3. \ \ Not\ recommended\ for\ reverse\ bias\ operation.}$ # Optical Characteristics at 350 mA (T $_{\! \scriptscriptstyle I}$ = 25 $^{\circ}$ C) | | | Peak Wavelength,
λ _{PEAK} (nm) | Dominant Wave-
length, λ _D ^[1] (nm) | Viewing Angle,
2θ½ [2] (°) | Luminous Efficiency
(Im/W) | |-----------------|-------|--|--|-------------------------------|-------------------------------| | Part Number | Color | Тур. | Тур. | Тур. | Тур. | | ASMT-MR00-AHJ00 | Red | 635 | 625 | 120 | 54 | | ASMT-MA00-AGH00 | Amber | 598 | 590 | 120 | 48 | | ASMT-MA00-AHJ00 | | 598 | 590 | 120 | 54 | | ASMT-MG00-NJK00 | Green | 519 | 525 | 120 | 54 | | ASMT-MG00-NLM00 | _ | 519 | 525 | 120 | 76 | | ASMT-MB00-NDF00 | Blue | 454 | 460 | 120 | 13 | # Electrical Characteristic at 350 mA (T $_{\! J}$ = 25 $^{\circ}$ C) | | Forward Voltage V _F (V) at I _F = 350 mA | | | Thermal Resistance
R _{0.ms} (°C/W) ^[1] | | |-----------|---|------|------|---|--| | Dice type | Min. | Typ. | Max. | Тур. | | | AllnGaP | 1.7 | 2.1 | 2.3 | 10 | | | InGaN | 2.8 | 3.2 | 3.5 | 10 | | ### Note: 1. $R\theta_{i-ms}$ is Thermal Resistance from LED junction to metal slug. ### AllnGaP Figure 1. Relative Intensity vs. Wavelength for AlInGaP Figure 2. Forward Current vs. Forward Voltage for AllnGaP Figure 3. Relative Luminous Flux vs. Mono Pulse Current for AllnGaP Figure 4. Radiation Pattern for AllnGaP Figure 5. Maximum forward current vs. ambient temperature for AlInGaP Derated based on T $_{\rm JMAX}$ = 125 °C, R $\theta_{\rm JA}$ = 30 °C/W, 40 °C/W and 50 °C/W Figure 6. Maximum Forward Current vs. Metal Slug Temperature for AlInGaP Derated based on T_{JMAX} = 125 °C, $R\theta_{J-MS}$ = 10 °C/W Figure 7. Forward voltage shift vs. junction temperature for AllnGaP Figure 8. Relative Light Output vs. junction temperature for AllnGaP Figure 9. Relative Intensity vs. Wavelength for InGaN Figure 10. Forward Current vs. Forward Voltage for InGaN Figure 11. Relative Luminous Flux vs. Mono Pulse Current for InGaN Figure 12. Radiation Pattern for InGaN Figure 13. Maximum Forward Current vs. Ambient Temperature for InGaN Derated based on T $_{IMAX}$ = 110 °C, R Θ_{I-A} = 30 °C/W, 40 °C/W and 50 °C/W Figure 14. Maximum Forward Current vs. Metal Slug Temperature for InGaN Derated based on T $_{IMAX}$ = 110 °C, R Θ_{I-MS} = 10 °C/W Figure 15. Forward voltage shift vs. junction temperature for InGaN Figure 16. Relative Light Output vs. junction temperature for InGaN ### Note: For detailed information on reflow soldering of Avago surface mount LEDs, refer to Avago Application Note AN1060 Surface Mounting SMT LED Indicator Components. Figure 18. Recommended soldering land pattern # **Option Selection Details** # $\mathbf{ASMT\text{-}Mxxx} - \mathbf{x} \ \mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{x}_4$ x₁ – Minimum Flux Bin Selection x₂ – Maximum Flux Bin Selection x₃ – Color Bin Selection x₄ – Packaging Option # Flux Bin Limit [x₁ x₂] | | Luminous Flu | Luminous Flux (lm) at I _F = 350mA | | | |-----|--------------|--|--|--| | Bin | Min. | Max. | | | | D | 11.5 | 15.0 | | | | E | 15.0 | 19.5 | | | | F | 19.5 | 25.5 | | | | G | 25.5 | 33.0 | | | | Н | 33.0 | 43.0 | | | | J | 43.0 | 56.0 | | | | K | 56.0 | 73.0 | | | | L | 73.0 | 95.0 | | | | M | 95.0 | 124.0 | | | Tolerance for each bin limits is $\pm 10\%$ # Color Bin Selection [x₃] Individual reel will contain parts from one full bin only. ## **Other Colors** | 0 | Full Distribution | |---|-------------------| | Z | A and B | | Υ | B and C | | W | C and D | | V | D and E | | Q | A, B and C | | Р | B, C and D | | N | C, D and E | | | | ## **Color Bin Limits** | Color | Bin | Min. | Max. | |-------|-------------------|-------|-------| | Red | Full Distribution | 620.0 | 635.0 | | Amber | Α | 582.0 | 584.5 | | | В | 584.5 | 587.0 | | | С | 587.0 | 589.5 | | | D | 589.5 | 592.0 | | | Е | 592.0 | 594.5 | | Blue | Α | 455.0 | 460.0 | | | В | 460.0 | 465.0 | | | С | 465.0 | 470.0 | | | D | 470.0 | 475.0 | | Green | Α | 515.0 | 520.0 | | | В | 520.0 | 525.0 | | | С | 525.0 | 530.0 | | | D | 530.0 | 535.0 | Tolerance: ± 1 nm ## Packaging option [x,] | Selection | Option | | |-----------|-------------|--| | 0 | Tube | | | 1 | Tape & Reel | | # Example ## ASMT-MR00-AHJ00 ASMT-MR00-Axxxx - AllnGaP Red, Non-diffused $\begin{array}{lll} \mathbf{x_1} = \mathbf{H} & & - & \text{Minimum Flux Bin H} \\ \mathbf{x_2} = \mathbf{J} & & - & \text{Maximum Flux Bin J} \\ \mathbf{x_3} = \mathbf{0} & & - & \text{Full Distribution} \\ \mathbf{x_4} = \mathbf{0} & & - & \text{Tube Option} \end{array}$ # Packing Tube - Option 0 Figure 19. Tube dimensions # Tape & Reel - Option 1 ## **Tape Dimension** Figure 20. Carrier tape dimensions # Tape & Reel - Option 1 (Cont.) ## **Tape Dimension** Figure 21. Carrier tape leader and trailer dimensions ## **Reel Dimensions** ## **Handling Precaution** The encapsulation material of the product is made of silicone for better reliability of the product. As silicone is a soft material, please do not press on the silicone or poke a sharp object onto the silicone. These might damage the product and cause premature failure. During assembly or handling, the unit should be held on the body only. Please refer to Avago Application Note AN5288 for detail information. ### **Moisture Sensitivity** This product is qualified as Moisture Sensitive Level 2a for InGaN devices and MSL 4 for AllnGaP devices per Jedec J-STD-020. Precautions when handling this moisture sensitive product is important to ensure the reliability of the product. Do refer to Avago Application Note AN5305 Handling of Moisture Sensitive Surface Mount Devices for details. ### A. Storage before use - Unopen moisture barrier bag (MBB) can be stored at < 40 °C/90% RH for 12 months. If the actual shelf life has exceeded 12 months and the humidity indicator card (HIC) indicates that baking is not required, then it is safe to reflow the LEDs per the original MSL rating. - It is not recommended to open the MBB prior to assembly (e.g., for IQC). ### B. Control after opening the MBB - The humidity indicator card (HIC) shall be read immediately upon opening of MBB. - The LEDs must be kept at <30 °C/60%RH at all time and all high temperature related process including soldering, curing or rework need to be completed within 672 hours for MSL 2a and 72 hours for MSL 4. #### C. Control for unfinished reel For any unused LEDs, they need to be stored in sealed MBB with desiccant or desiccator at <5%RH. ### D. Control of assembly boards If the PCB soldered with the LEDs is to be subjected to other high temperature processes, the PCB need to be stored in sealed MBB with desiccant or desiccator at < 5% RH to ensure no LEDs have exceeded their floor life of 672 hours for MSL 2a and 72 hours for MSL 4. ### E. Baking is required if - HIC "10%" indicator is not blue and "5%" indicator is pink. - The LEDs are exposed to condition of >30 °C/60% RH at any time. - The LEDs floor life exceeded 672 hours for MSL 2a and 72 hours for MSL 4. Recommended baking condition: 60 ± 5 °C for 20 hrs. #### **DISCLAIMER** AVAGO'S PRODUCTS AND SOFTWARE ARE NOT SPECIFICALLY DESIGNED, MANUFACTURED OR AUTHORIZED FOR SALE AS PARTS, COMPONENTS OR ASSEMBLIES FOR THE PLANNING, CONSTRUCTION, MAINTENANCE OR DIRECT OPERATION OF A NUCLEAR FACILITY OR FOR USE IN MEDICAL DEVICES OR APPLICATIONS. CUSTOMER IS SOLELY RESPONSIBLE, AND WAIVES ALL RIGHTS TO MAKE CLAIMS AGAINST AVAGO OR ITS SUPPLIERS, FOR ALL LOSS, DAMAGE, EXPENSE OR LIABILITY IN CONNECTION WITH SUCH USE. For product information and a complete list of distributors, please go to our web site: www.avagotech.com