HLMP-N305, HLMP-NG0x, HLMP-NL06

T-1 (3 mm) Auto Insertable LED Lamps

Data Sheet

Description

This family of 3 mm LED Lamps is capable of withstanding automatic insertion and wave soldering processes.

Designed with a thick epoxy flange and soft leadframe material, it is ideal for clinch and cut operations.

Applications

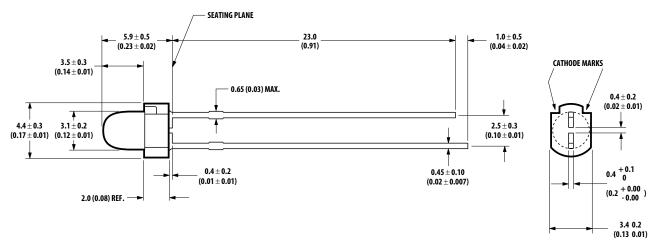
- General purpose
- High volume manufacturing

Features

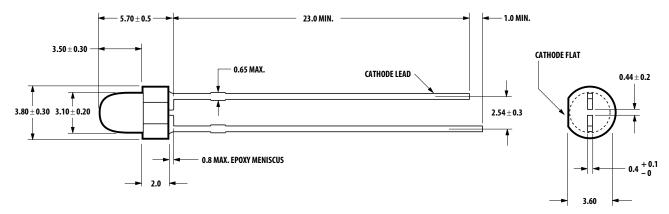
- T-1 (3 mm) auto insertable package
- AllnGaP SunPower intensity
- High light output
- Tinted diffused and tinted non-diffused lens options
- Wide viewing angle
- Variety of colors
- Available with straight or formed lead tape and reel options

Device Selection Guides

High Brightn	iess Lamps	Package		Luminous Intensity,	Viewing Angle,	Package
Color	Part Number	Tinted	Diffused	- Min. lv @ 20 mA	20 ¹ / ₂	Outline
Red	HLMP-NG05	μ		90.2	45	A
	HLMP-NG07	μ		90.2	60	В
Amber	HLMP-NL06	μ		96.2	60	В

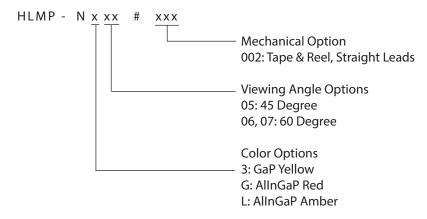

High Efficiency I	Lamps	Package		Luminous Intensity,	Viewing Angle,	Package
Color	Part Number	Tinted	Diffused	Min. lv @ 10 mA	20 ¹ / ₂	Outline
GaP Yellow	HLMP-N305	Χ		14.7	45	А

Note:


^{1.} $2\theta^{1}/2$ is the off axis angle where the luminous intensity is $^{1}/_{2}$ the on axis intensity.

Package Dimensions

Package Outline "A"


Package Outline "B"

NOTES:

- 1. All dimensions are in millimeters (inches).
- 2. Leads are mild steel with tin plating.
- 3. Epoxy meniscus of 0.8 mm (0.03 in.) Maximum may extend to the leads.
- 4. For PCB hole recommendations, see the Precautions section.

Part Numbering System

Absolute Maximum Ratings at T_A = 25 °C

		AlinGaP	
Parameter	Yellow	Amber & Red	Units
DC Forward Current ^[1]	20	30 ^[2,3]	mA
Reverse Voltage (Ir = 100 μ A)	5		V
Junction Temperature, T _{jmax}	110		°C
Storage Temperature Range	-40 to +85		°C
Operating Temperature Range	-20 to +85	-40 to +85	°C

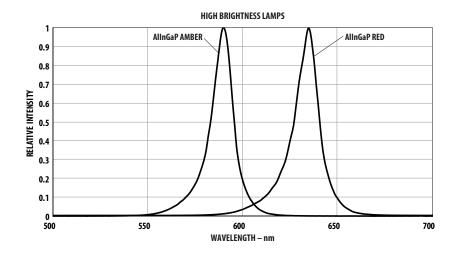
Notes

- 1. See Figure 4 for maximum current derating vs. ambient temperature.
- 2. Suggested minimum DC current: 10 mA.
- 3. Maximum Peak Pulsed Forward Current: 50 mA, 30 mA average.

Electrical Characteristics at T_A = 25°C

	Forward V	oltage Vf (Volts	;)	Capacitance C (pF) , Vf = 0, f = 1 MHz	Thermal Resistance R θ _{J-PIN}	Speed of Response $ au_{\text{s}}$ (ns) Time Constant e-t/ $ au_{\text{s}}$
Part Number	Тур.	Max.	If (mA)	Тур.	(°C/W)	Typ.
HLMP-N30x	2.00	2.6	10	15	290	90
HLMP-NL06 ^[1]	2.02	2.4	20	40	240	20
HLMP-NG0x ^[1]	1.90	2.4	20	40	240	20

Note:


1. Please contact your Avago Sales Representative about operating currents below 10 mA.

Optical Characteristics at T_A = 25 °C

	Luminous	Intensity	Typ. Peak	Typ. Dominant Wavelength	Typ. Spectral	Luminous Efficacy Width
Part Number	Min.	If (mA)	Wavelength (nm)	(nm)	Half Width	(lm/W)
HLMP-NG05	90.2	20	635	626	17	150
HLMP-NG07	90.2	20	635	626	17	150
HLMP-NL06	96.2	20	592	590	17	480
HLMP-N305	14.7	10	583	585	36	500

Notes:

- 1. The luminous intensity, lv, is measured at the mechanical axis of the lamp package. The actual peak of the spatial radiation pattern may not be aligned with this axis.
- 2. The dominant wavelength, λd , is derived from the CIE Chromaticity Diagram and represents the color of the device.
- 3. The radiant intensity, le, in watts per steradian, may be found from the equation $le = lv/\eta_v$, where lv is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/watt.

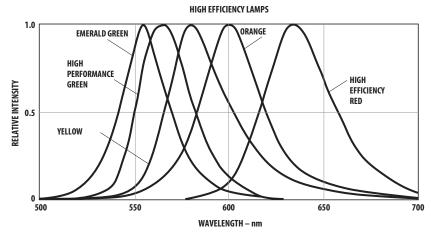


Figure 1. Relative intensity vs. peak wavelength.

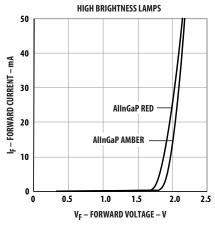
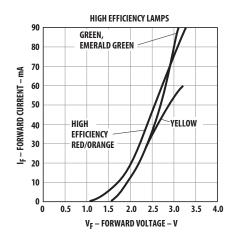
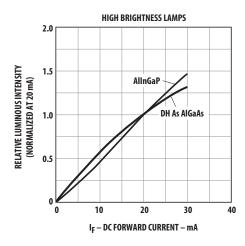




Figure 2. Forward current vs. forward voltage.

4.0
3.5
3.0
WELTURE LUMINOUS INTERNSTITY

1.5
0.5
0
0
5
10
15
20
25
30

IDC-DC CURRENT PER LED - mA

Figure 3. Relative luminous intensity vs. forward current.

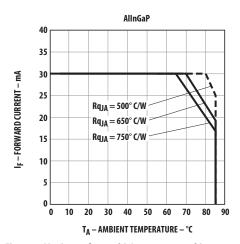


Figure 4. Maximum forward DC current vs. ambient temperature.

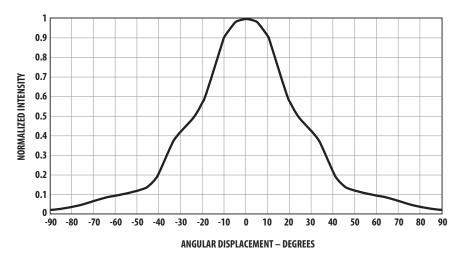


Figure 5. Representative spatial radiation pattern for 45° viewing angle.

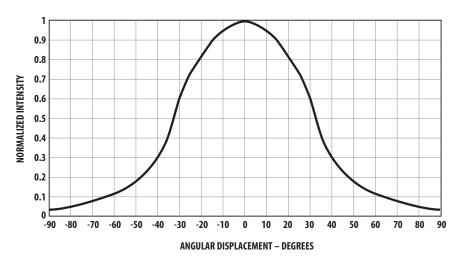


Figure 6. Representative spatial radiation pattern for 60° viewing angle.

Intensity Bin Limits

Color	Bin	Intensity Rang Min.	ge (mcd) Max.
	Н	13.8	27.6
	I	22.0	44.0
	J	35.2	70.4
	K	56.4	112.8
	L	90.2	180.4
	M	138.0	276.0
	N	200.0	400.0
	0	290.0	580.0
Red/Orange	P	500.0	1000.0
/Red-Orange	Q	700.0	1400.0
	R	1000.0	2000.0
	S	1400.0	2800.0
	T	2000.0	4000.0
	U	2900.0	5800.0
	V	4200.0	8400.0
	W	6000.0	12000.0
	X	8700.0	17400.0
	Υ	12600.0	25200.0
	Z	18200.0	36400.0
	G	14.7	29.4
	H	23.5	47.0
	-	37.6	75.2
	J	60.1	120.2
	K	96.2	192.4
	L	147.0	294.0
	M	212.0	424.0
Yellow/Amber	N	300.0	600.0
	0	450.0	900.0
	P	700.0	1400.0
	Q	1000.0	2000.0
	R	1600.0	3200.0
	S	2600.0	5200.0
	T	4000.0	8000.0
	U	6500.0	13000.0
	V	10000.0	20000.
	W	16000.0	30000.0

Maximum tolerance for each bin limit is $\pm 18\%$.

Amber Color Bin Limits

(nm at 20 mA)

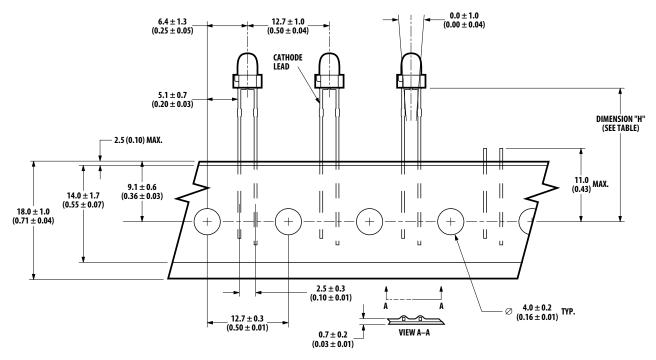
Bin Name	Min.	Max.
1	584.5	587.0
2	587.0	589.5
4	589.5	592.0
6	592.0	594.5

Tolerance for each bin limit is ± 0.5 nm.

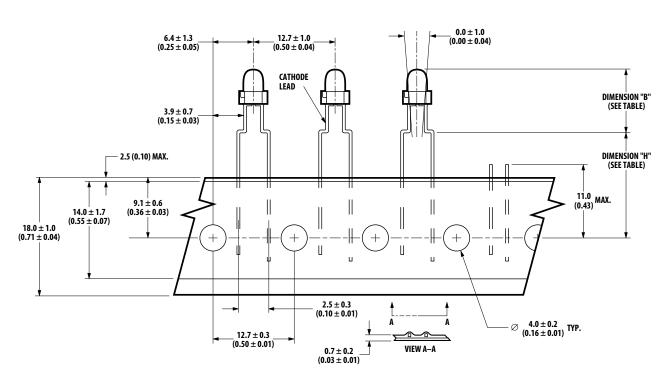
Color Categories

Color	Category#	Lambda (nm) Min.	Max.
	1	582.0	584.5
	3	584.5	587.0
Yellow	2	587.0	589.5
	4	589.5	592.0
	5	592.0	593.0

Tolerance for each bin limit is ± 0.5 nm.


Taping Options

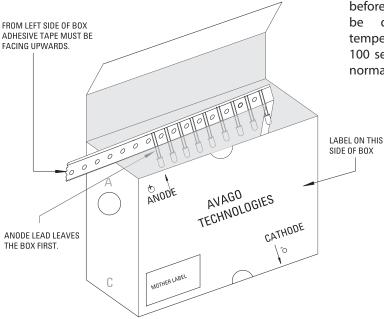
		Straight Lead	
Option	#002	#2CA	#2CD
Dimension "B"	-	_	_
Dimension "H"	20.5 ± 1.0 (0.81 ± 0.04)	18.0 ± 1.0 (0.71 ± 0.04)	20.5 ± 1.0 (0.81 ± 0.04)


	Formed Lead						
Option	#2UK	#2UL	#2UM	#2UN	#2UP	#2UQ	#2UR
Dimension "B"	12.0 ± 1.0 (0.47 ± 0.04)	9.0 ± 1.0 (0.35 ± 0.04)	10.0 ± 1.0 (0.39 ± 0.04)	11.0 ± 1.0 (0.43 ± 0.04)	13.0 ± 1.0 (0.51 ± 0.04)	14.0 ± 1.0 (0.55 ± 0.04)	15.0 ± 1.0 (0.59 ± 0.04)
Dimension "H"				16.0 ± 1.0 (0.63 ± 0.04)			

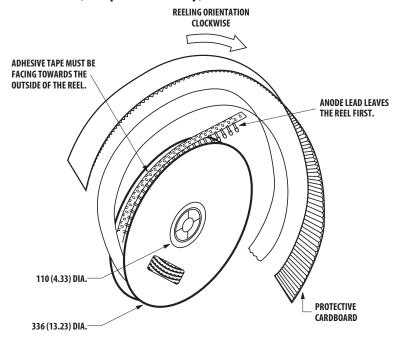
Units: mm (inches)

Tape Outline Drawing

Straight Lead



Formed Lead


Package Options

Lead Option	Ammo Pack (1000 pcs.)	Tape & Reel (2000 pcs.)	
Straight Lead	#2C —	#002	
Formed Lead	#2U —	_	

AMMO PACK (for All options except #002)

TAPE & REEL (for option #002 only)

DIMENSIONS IN MILLIMETERS (INCHES).

Recommended Assembly Condition

- A single-sided phenolic printed circuit board (PCB) is preferred. Double-sided PCB and other materials may cause greater lead stress. Recommended throughhole diameter is 0.98 to 1.08 mm. Leadlength below the PCB should be 1.5 to 2.0 mm, and the clinching angle (angle between the lead and PCB) should be 30 ±10 degrees.
- If SMT devices and an adhesive are used on the same pcb as these lamps, the adhesive should be cured before the lamps are auto-inserted. If curing must be done after lamp insertion, the cure temperature and time should not exceed 140°C, 100 seconds. This is the temperature of the surface normal to the IR source.

Precautions

Lead Forming

- The leads of an LED lamp may be preformed or cut to length prior to insertion and soldering into PC board.
- If lead forming is required before soldering, care must be taken to avoid any excessive mechanical stress induced to LED package. Otherwise, cut the leads of LED to length after soldering process at room temperature. The solder joint formed will absorb the mechanical stress of the lead cutting from traveling to the LED chip die attach and wirebond.
- It is recommended that tooling made to precisely form and cut the leads to length rather than rely upon hand operation.

Soldering Conditions

- Care must be taken during PCB assembly and soldering process to prevent damage to LED component.
- The closest LED is allowed to solder on board is 1.59 mm below the body (encapsulant epoxy) for those parts without standoff.
- Recommended soldering conditions:

Wave Soldering	Dipping	Manual Solder
Pre-heat Temperature	105 °C Max.	_
Pre-heat Time	30 sec Max.	_
Peak Temperature	250 °C Max.	260 °C Max.
Dwell Time	3 sec Max.	5 sec Max.
•		

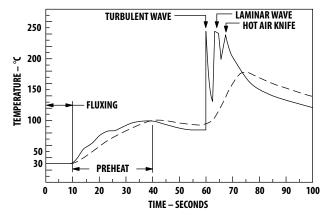


Figure 7. Recommended wave soldering profile.

- Wave soldering parameter must be set and maintained according to recommended temperature and dwell time in the solder wave. Customer is advised to periodically check on the soldering profile to ensure the soldering profile used is always conforming to recommended soldering condition.
- If necessary, use fixture to hold the LED component in proper orientation with respect to the PCB during soldering process.
- Proper handling is imperative to avoid excessive thermal stresses to LED components when heated. Therefore, the soldered PCB must be allowed to cool to room temperature, 25°C, before handling.
- Special attention must be given to board fabrication, solder masking, surface plating and lead holes size and component orientation to assure solderability.
- Recommended PC board plated through hole sizes for LED component leads:

	LED Component Lead Size	Diagonal	Plated Through -Hole Diameter
Lead size (typ.)	0.45 × 0.45 mm	0.636 mm	0.98 to 1.08 mm
	(0.018 × 0.018 in.)	(0.025 in)	(0.039 to 0.043 in)
Dambar shear-	0.65 mm	0.919 mm	_
off area (max.)	(0.026 in)	(0.036 in)	
Lead size (typ.)	0.50 × 0.50 mm	0.707 mm	1.05 to 1.15 mm
	(0.020 × 0.020 in.)	(0.028 in)	(0.041 to 0.045 in)
Dambar shear-	0.70 mm	0.99 mm	
off area (max.)	(0.028 in)	(0.039 in)	

Note: Refer to application note AN1027 for more information on soldering LED components.

CONVEYOR SPEED = 1.83 M/MIN (6 FT/MIN)
PREHEAT SETTING = 150°C (100°C PCB)
SOLDER WAVE TEMPERATURE = 245°C
AIR KNIFE AIR TEMPERATURE = 390°C
AIR KNIFE DISTANCE = 1.91 mm (0.25 IN.)
AIR KNIFE ANGLE = 40
SOLDER: SN63; FLUX: RMA

NOTE: ALLOW FOR BOARDS TO BE SUFFICIENTLY COOLED BEFORE EXERTING MECHANICAL FORCE.

For product information and a complete list of distributors, please go to our website: **www.avagotech.com**

