

ARTESYN AVD75B-48S12 Series

75 Watts Sixteenth-brick Converter

PRODUCT DESCRIPTION

Advanced Energy's Artesyn AVD75B-48S12 is a single output DC/DC converter with standard sixteenth-brick outline and pin configuration. It delivers up to 6.25A output current with 12V output voltage. Above 93% ultra-high efficiency and excellent thermal performance make it an ideal choice to supply power in telecom and datacom.

AT A GLANCE

Total Power

75 Watts

Input Voltage

36 to 75 Vdc

of Outputs

Single

SPECIAL FEATURES

- Delivering up to 6.25A output current
- Ultra-high efficiency 93% typ. at full load
- Wide input range: 36V to75V
- Excellent thermal performance
- No minimum load requirement
- Basic isolation
- High power density
- Low output noise
- RoHS 3.0
- Startup Pre-bias
- Remote control function
- Remote output sense
- Trim function: 80% ~ 110%
- Input under voltage lockout
- Output over current protection
- Output short protection
- Output over voltage protection

- Over temperature protection
- Industry standard sixteenth-brick pin-out outline
- SMT or through-hole option

SAFETY

- UL UL/CSA 60950-1
- TUV EN 62368-1
- CF FN 62368-1

TYPICAL APPLICATIONS

- Telecom
- Datacom

MODEL NUMBERS

Standard	Output Voltage	Output Current	Structure	Remote ON/OFF logic	ROHS
AVD75B-48S12B-6L	12Vdc	6.25A	Baseplate	Negative	RoHS 3.0
AVD75B-48S12-6L	12Vdc	6.25A	Open-frame	Negative	RoHS 3.0
AVD75B-48S12TL	12Vdc	6.25A	Open-frame	Negative	RoHS 3.0
AVD75B-48S12B-4L	12Vdc	6.25A	Baseplate	Negative	RoHS 3.0

Order Information

	AVD75B	1	48	S	12	Р	В	1	6	٦
ſ	1		2	3	4	(5)	6	7	8	9

1)	Model series	AVD: high efficiency sixteenth brick series, 75: output power 75W
2	Input voltage	48: 36V to 75V input range, rated input voltage 48V
3	Output number	S: single output
4	Rated output voltage	12: 12V output
(5)	Remote ON/OFF logic	Default: negative logic; P: positive logic
6	Baseplate	B: with baseplate; default: open frame
7	-	Need "-" for through-hole unit, to separate the data of voltage and pin length, omit for SMT unit
8	Pin length	T: SMT; 6: 3.8mm \pm 0.25mm pin length; 4: 4.8mm \pm 0.25mm
9	RoHS status	L: RoHS 3.0

Options

None

Absolute Maximum Ratings

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings						
Parameter	Model	Symbol	Min	Тур	Max	Unit
Input Voltage Operating -Continuous Non-operating -100mS	AII AII	V _{IN,DC}			80 100	Vdc Vdc
Maximum Output Power	All	P _{O,max}	-	-	75	W
Isolation Voltage ¹ Input to output	All		-	-	2250	Vdc
Ambient Operating Temperature	All	T _A	-40	-	+85	°C
Storage Temperature	All	T _{STG}	-55	-	+125	°C
Voltage at remote ON/OFF pin	All		-0.3	-	+12	Vdc
Humidity (non-condensing) Operating Non-operating	AII AII				95 95	% %

Note 1 - 1mA for 60s, slew rate of 1500V/10s

Input Specifications

Table 2. Input Specifications						
Parameter	Conditions ¹	Symbol	Min	Тур	Max	Unit
Operating Input Voltage, DC	All	V _{IN,DC}	36	48	75	Vdc
Turn-on Voltage Threshold	$I_{O} = I_{O,max}$	V _{IN,ON}	31	-	36	Vdc
Turn-off Voltage Threshold	$I_{O} = I_{O,max}$	V _{IN,OFF}	30	-	35	Vdc
Lockout Voltage Hysteresis	$I_{O} = I_{O,max}$		1	-	3	V
	V _{IN,DC} = 36Vdc	I _{IN,max}	-	-	3	А
Recommended Input Fuse	Fast blow external fuse recommended		-	-	5	А
Recommended External Input Capacitance	Low ESR capacitor recommended	C _{IN}	100	-	-	uF
Input Reflected Ripple Current	Through 12uH inductor	I _{IN,typ}	-	25	-	mA
Operating Efficiency	$T_A = 25 {}^{\circ}\text{C}$ $I_O = I_{O,max}$ $I_O = 50 {}^{\circ}\text{I}_{O,max}$	η	-	93.3 91	-	% %

Note 1 - Ta = 25 $^{\circ}$ C, airflow rate = 400 LFM, Vin = 48Vdc, nominal Vout unless otherwise noted.

Output Specifications

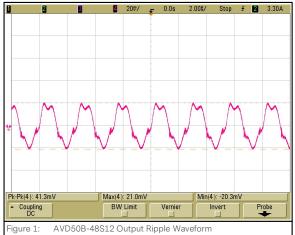
Parameter		Conditions ¹	Symbol	Min	Тур	Max	Unit
Factory Set Voltage		V _{IN,DC} = 48Vdc I _O = 50%I _{O,max}	Vo	11.88	12	12.12	Vdc
Output Voltage Line Regulat	tion	All	±%V ₀	-	0.06 7.5	-	%
			±V ₀	-	0.06	-	mV %
Output Voltage Load Regula	ation	All	±V _O		7.5	_	mV
Output Voltage Temperature	e Regulation	All	%V ₀	-	-	0.02	%/°C
Output Voltage Trim Range		All	Vo	9.6	-	13.2	V
Output Ripple, pk-pk		Measure with a 1uF ceramic capacitor in parallel with a 10uF tantalum capacitor, 0 to 20MHz bandwidth	Vo	-	64	-	mV _{PK-PK}
Output Current		All	I _O	0	-	6.25	А
Output DC current-limit inception ²		All	Io	8	-	12	А
V _○ Load Capacitance ³		All	Co	220	-	3300	uF
V _O Dynamic Response		25%~50%~25% or 50%~75%~50% 25% load change slew rate = 0.1A/us	±V _O T _s	- -	60 50	-	mV uSec
	Peak Deviation Settling Time	25%~50%~25% or 50%~75%~50% 25% load change slew rate = 1A/us	±V _O T _s	- -	70 100	-	mV uSec
	Rise time	$I_{O} = I_{O,max}$	T _{rise}	-	20	-	mS
Turn-on Transient	Turn-on delay time	$I_{O} = I_{O,max}$	T _{turn-on}	-	10	-	mS
	Output voltage overshoot	I _O = 0	%V _O	-	-	5	%
Switching Frequency		All	f _{sw}	-	350	-	KHz
Remote ON/OFF control	Off-state voltage	All		-0.3	-	1.2	V
(Positive logic)	On-state voltage	All		3.5	-	5	V
Remote ON/OFF control	Off-state voltage	All		3.5	-	5	V
(Negative logic)	On-state voltage	All		-0.3	-	1.2	V

Note 1 - Ta = 25 °C, airflow rate = 400 LFM, Vin = 48Vdc, nominal Vout unless otherwise noted.

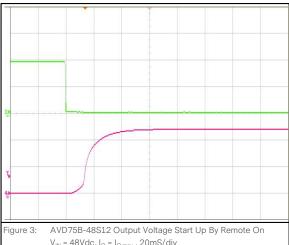
Note 2 - Hiccup: auto-restart when over-current condition is removed. Note 3 - High frequency and low ESR is recommended.

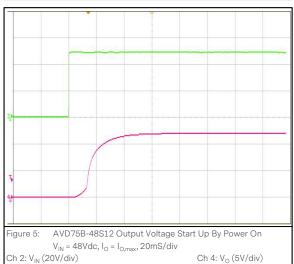
Output Specifications

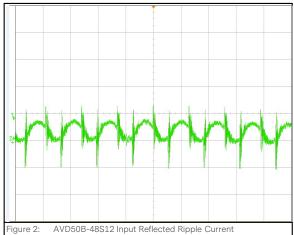
Table 3. Output Specifications Con't						
Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Output over voltage protection4	Static	Vo	14	-	16.8	V
Output over-voltage protection ⁴	Dynamic	Vo	14	-	17.0	V
Output over-temperature protection ⁵	All	Т	-	120	-	°C
Over-temperature hysteresis	All	Т	-	10	-	°C
MTBF ⁶	Telcordia SR-332-2006; 80% load, 300LFM, 40 °C T _A		2.0	-	-	10 ⁶ h


Note 4 - Hiccup: auto-restart when over-voltage condition is removed.

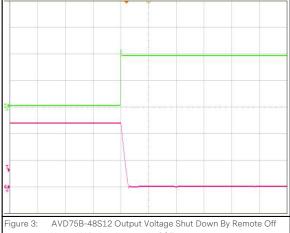
Note 5 - Auto recovery. over-temperature protect(OTP) test point: see Figure 10 and Figure 11.


Note 6 - 300LFM, 40°C, 48Vdc input voltage, 80%l_{O,max}


AVD75B-48S12 Performance Curves

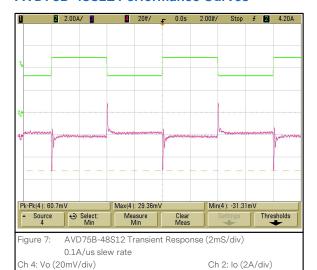


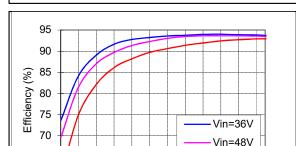
2uS/div Ch 4: V_O (20mV/div)



 $V_{\rm IN}$ = 48Vdc, $I_{\rm O}$ = $I_{\rm O,max}$, 20mS/div Ch 2: Remote On (2V/div) Ch 4: V_O (5V/div)

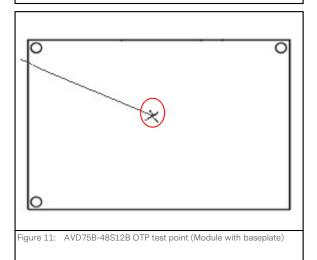
2uS/div Ch 2: I_{IN} (10mA/div)

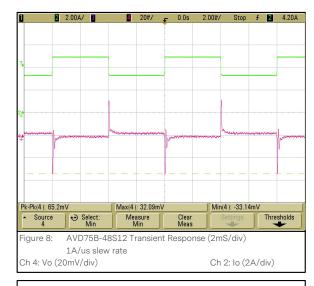

 V_{IN} = 48Vdc, I_{O} = $I_{O,max}$, 10mS/div Ch 2: Remote Off (2V/div) Ch 4: V_O (5V/div)



Ch 2: V_{IN} (20V/div) $\mathrm{Ch}\ 4\mathrm{:}\ \mathrm{V}_{\mathrm{O}}\left(5\mathrm{V}/\mathrm{div}\right)$

AVD75B-48S12 Performance Curves





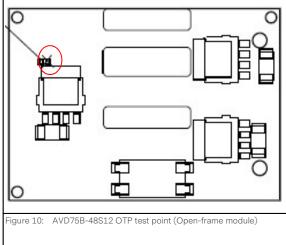
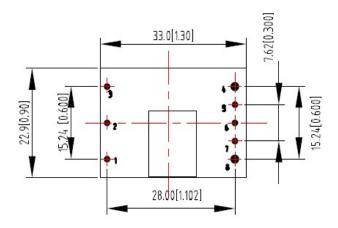
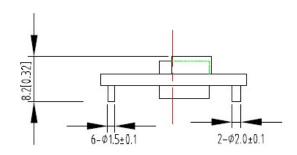

Vin=75V

Figure 9: AVD75B-48S12 Efficiency Curves @ 25 °C, 400LFM
Loading: Io = 10% increment to 6.25A

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 Output current (A)




65

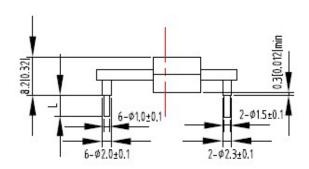
Mechanical Outlines - Surface Mounted Module

BOTTOM VIEW

SIDE VIEW

UNIT: mm[inch]

 $\label{eq:tolerance: X.Xmm ± 0.5mm[X.XX in. ± 0.02in.]} $$X.XXmm ± 0.25mm[X.XXX in. ± 0.01in.]$$


Figure 12 Mechanical Outlines for Surface Mounted Module

Mechanical Outlines - Open Frame Module

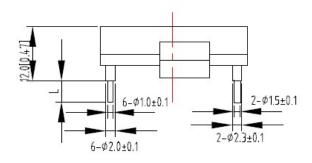
33.0[1.30] 33.0[1.30] 28.00[1.102]

SIDE VIEW

TOLERANCE: X.Xmm±0.5mm[X.XX in.±0.02in.]

X.XXmm±0.25mm[X.XXX in.±0.01in.]

UNIT: mmlinch]


Figure 13 Mechanical Outlines for Open Frame Module

Mechanical Outlines - Baseplate Module

33.0[1.30] 33.0[1.30] 29.7 28.00[1.102]

SIDE VIEW

UNIT: mm[inch]

TOLERANCE: $X.Xmm\pm0.5mm[X.XX in.\pm0.02in.]$ $X.XXmm\pm0.25mm[X.XXX in.\pm0.01in.]$

Figure 14 Mechanical Outlines for Baseplate Module

Note: Depth penetration into base plate, of M3 screws used at baseplate mounting holes, not to exceed maximum of 3.0mm

Pin length option

Device code suffix	L
-4	4.8mm±0.25mm
-6	3.8mm±0.25mm
-8	2.8mm±0.25mm
None	5.8mm±0.25mm

Pin Designations

Pin No	Name	Function
1	Vin+	Positive input terminal
2	Remote On/Off	Remote control terminal
3	Vin-	Negative input terminal
4	Vo-	Negative output terminal
5	S-	Negative remote sense terminal
6	Trim	Output voltage trim terminal
7	S+	Positive remote sense terminal
8	Vo+	Positive output terminal

Electromagnetic compatibility Characteristics

AVD75B-48S12 power supply is designed to meet the following EMC immunity specifications:

Table 4. Environmental Specifications		
Document	Description	Criteria
EN55032, Class A Limits	Conducted and Radiated EMI Limits, DC input port	/
IEC/EN 61000-4-2, Level 3	Electromagnetic Compatibility (EMC) - Testing and measurement techniques - Electrostatic discharge immunity test. Enclosure Port	В
IEC/EN 61000-4-6, Level 2	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Continuous Conducted Interference. DC input port	А
IEC/EN 61000-4-4, Level 3	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Electrical Fast Transient. DC input port.	В
IEC/EN 61000-4-5	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Immunity to surges - 600V common mode and 600V differential mode for DC ports	В
EN61000-4-29	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Voltage Dips and short interruptions and voltage variations. DC input port	В

Criterion A: Normal performance during and after test.

Criterion B: For EFT and surges, low-voltage protection or reset is not allowed. Temporary output voltage fluctuation ceases after disturbances ceases, and from which the EUT recovers its normal performance automatically. For Dips and ESD, output voltage fluctuation or reset is allowed during the test, but recovers to its normal performance automatically after the disturbance ceases.

13

Safety Certifications

The AVD75B-48S12 power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.

Table 5. Safety Certifications for AVD75B-48S12 power supply system				
Standard	Agency	Description		
UL 60950-1, 2nd Edition, 2014-10-14; CAN/CSA C22.2 No. 60950-1-07, 2nd Edition, 2014-10	UL+CUL	US and Canada Requirements		
EN 62368-1:2014/A11:2017	TUV-SUD	European Requirements		
EN 62368-1:2014+A11:2017	CE	CE Marking		

Operating Temperature

The AVD75B-48S12 series power supply will start and operate within stated specifications at an ambient temperature from -40 $^{\circ}$ C to 85 $^{\circ}$ C under all load conditions. The storage temperature is -55 $^{\circ}$ C to 125 $^{\circ}$ C.

Thermal Considerations

The converter is designed to operate in different thermal environments and sufficient cooling must be provided. Proper cooling of the DC/DC converter can be verified by measuring the temperature at the test point as shown in the Figure 15. The temperature at this point should not exceed the max values in the table 6.

Test Point1 Test Point1

Figure 15 Temperature test point

Table 6. Temperature limit of the test point			
Test Point	Temperature limit		
Test point 1(C3)	135°C		
Test point 2 (Baseplate)	120°C		

Thermal Considerations - Con't

For a typical application, below are the derating curves show the derating of output current vs. ambient air temperature at different air velocity. The airflow direction is from Vin- to Vin+.

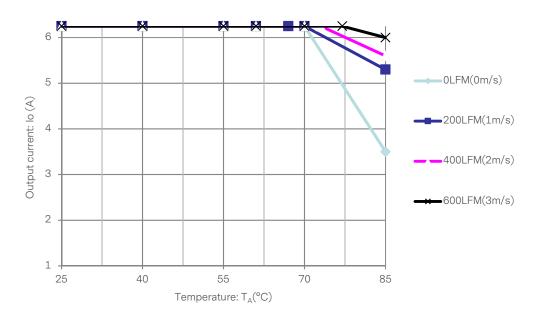


Figure 16 AVD75B-48S12-6L and AVD75B-48S12TL

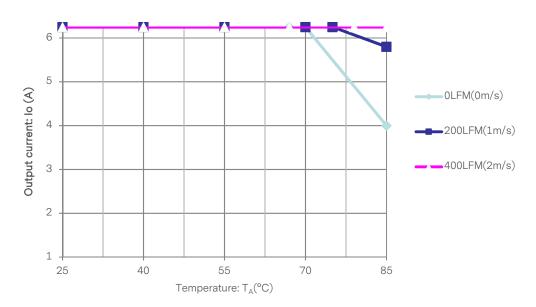


Figure 17 AVD75B-48S12B-6L

Qualification Testing

Parameter	Unit (pcs)	Test condition	
Halt test	4-5	$T_{a,min}$ -20 °C to $T_{a,max}$ +25 °C, 10 °C step, V_{in} = min to max, 0 ~ 100% load	
Vibration	3	Frequency range: 5Hz ~ 20Hz, 20Hz ~ 200Hz, A.S.D: 1.0m²/s³, -3db/oct, axes of vibration: X/Y/Z. Time: 30min/axes	
Mechanical Shock	3	30g, 6ms, 3axes, 6directions, 3time/direction	
Thermal Shock	3	-55 °C to 125 °C, unit temperature 20 cycles	
Thermal Cycling	3	-40 °C to 55 °C, temperature change rate: 1°C/min, cycles: 2cycles	
Humidity	3	40 °C, 95%RH, 48h	
Solder Ability	15	IPC J-STD-002C-2007	

Typical Application

Below is the typical application of the AVD75B-48S12 series power supply.

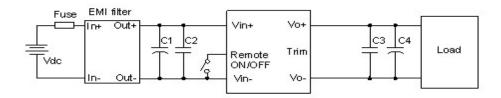


Figure 18 Typical application

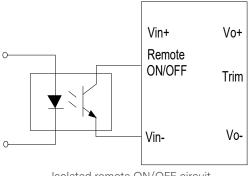
C1: 220uF/100V electrolytic capacitor, P/N: UPM2A101MPD (Nichicon) or equivalent caps.

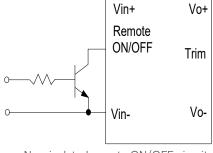
C2: 0.1uF/100V X7R ceramic capacitor, P/N: C3216X7R2A104KT0L0S (TDK) or equivalent caps.

C3: 1uF/100V X7R ceramic capacitor, P/N: C3216X7R2A105KT0L0U (TDK) or equivalent caps.

C4: 220uF oscon capacitor, P/N: CUXAE1C221M2BA (Sanyo).

Fuse: External fast blow fuse with a rating of 5A. The recommended fuse model is 0453005.MR from LITTLEFUSE.


EMI filter: see Figure 23.


48V input and full load output are default.

Remote ON/OFF

Negative remote ON/OFF logic is available in AVD75B-48S12. The logic is CMOS and TTL compatible. The voltage between pin Remote ON/OFF and pin Vin- must not exceed the range listed in table "Feature characteristics" to ensure proper operation. The external Remote ON/OFF circuit is highly recommended as shown in figure 19.

Isolated remote ON/OFF circuit

Non-isolated remote ON/OFF circuit

Figure 19 External Remote ON/OFF circuit

Trim Characteristics

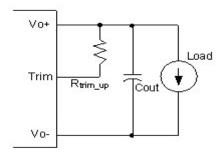
Connecting an external resistor between Trim pin and Vo- pin will decrease the output voltage. While connecting it between Trim and Vo+ will increase the output voltage. The following equations determine the external resistance to obtain the trimmed output voltage.

$$R_{adj-down} = \frac{510}{\Lambda} - 10.2(K\Omega)$$

$$R_{adj-up} = \frac{5.1 \times V_{nom} \times \left(100 + \Delta\right)}{1.225 \times \Delta} - \frac{510}{\Delta} - 10.2(K\Omega)$$

 \triangle :Output rate against nominal output voltage.

$$\Delta = \frac{100 \times (V_{nom} - V_0)}{V_{nom}}$$


V_{nom}: Nominal output voltage.

For example, to get 13.2V output, the trimming resistor is

$$\Delta = \frac{100 \times (V_o - V_{o,nom})}{V_{o,nom}} = \frac{100 \times (13.2 - 12)}{12} = 10$$

$$R_{adj-up} = \frac{5.1 \times 12 \times \left(100 + 10\right)}{1.225 \times 10} - \frac{510}{10} - 10.2 = 488.35(K\Omega)$$

When trimming up, the output current should be decreased accordingly so as not to exceed the maximum output power.

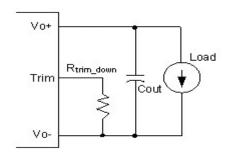


Figure 21 Trim down

If the sense compensate function is not necessary, connect S+ to Vo+ and S- to Vo- directly.

Input Ripple & Inrush Current and Output Ripple & Noise Test Configuration

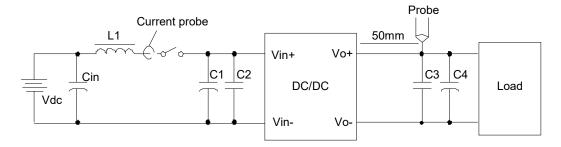
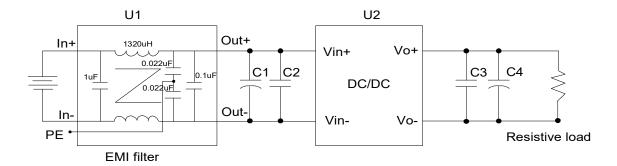


Figure 22 Input ripple & output ripple & noise test configuration


Vdc: DC power supply

L1: 12uH

Cin: 220uF/100V typical C1 ~ C4: See Figure 18

Note - Using a coaxial cable with series 50ohm resistor and 0.68uF ceramic capacitor or a ground ring of probe to test output ripple & noise is recommended.

EMC Test configuration

U1: Input EMC filter

U2: Module to test, AVD75B-48S12

C1 ~ C4: See Figure 18

Figure 23 EMC Test configuration

Package Information

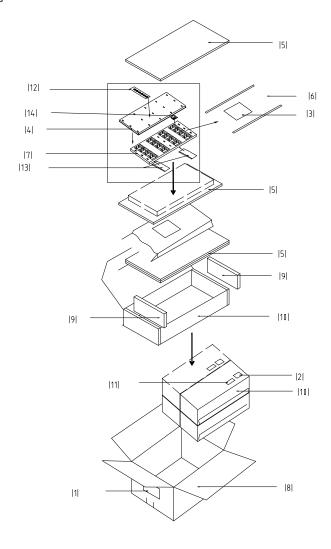
Package type

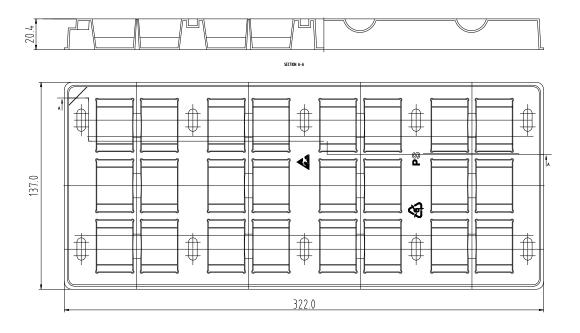
moisture sensitivity level 3, moisture barrier bags.

Minimal package QTY

192 pcs.

Package disassembly




Figure 24 Package disassembly

Package Information

Table 7. Assemblies description				
No.	Description			
1	Shipping label			
2	Moisture proof identification label			
3	Moistureproof caution label			
4	Tray cover			
5	Anti-static PE foam 1			
6	Moisture barrier bag			
7	Tray			
8	Shipping carton			
9	Anti-static PE foam 2			
10	Inner box			
11	Model barcode label			
12	Humidity indicating card			
13	Desiccant			
14	Model			

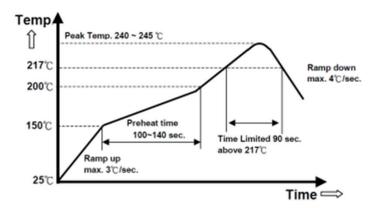
Package tray information

SOLDERING INFORMATION

Soldering

The product is intended for standard manual or wave soldering.

	Product Requirement	Product Name
R6	Wave soldering	AVD75B-48S12B-6L AVD75B-48S12-6L


When wave soldering is used, the temperature on pins is specified to maximum 260 °C for maximum 7s.

When soldering by hand, the iron temperature should be maintained at 300 °C ~ 380 °C and applied to the converter pins for less than 10s. Longer exposure can cause internal damage to the converter. Cleaning of solder joint can be performed with cleaning solvent IPA or simulative.

The below products are intended for standard reflow soldering.

	Product Requirement	Product Name
R6	Reflow soldering	AVD75B-48S12-6L AVD75B-48S12TL

When reflow soldering is used, please refer to following fig for recommended temperature profile parameters.

24

Record of Revision and Changes

Issue	Date	Description	Originators
1.0	08.08.2017	First Issue	L. Lee
1.1	11.21.2017	Update the isolation voltage	L. Lee
1.2	07.10.2018	Update the trim error	K. Wang
1.3	12.09.2019	Update the soldering information	L. Lee
1.4	06.04.2020	Update RoHS information	V. Guo
1.5	06.17.2020	Update 62368-1 cert	L.Lee
1.6	06.10.2021	Update AE template	J. Zhang
1.7	11.19.2021	Add the AVD75B-48S12B-4L	K. Wang

ABOUT ADVANCED ENERGY

Advanced Energy (AE) has devoted more than three decades to perfecting power for its global customers. AE designs and manufactures highly engineered, precision power conversion, measurement and control solutions for mission-critical applications and processes.

Our products enable customer innovation in complex applications for a wide range of industries including semiconductor equipment, industrial, manufacturing, telecommunications, data center computing, and medical. With deep applications know-how and responsive service and support across the globe, we build collaborative partnerships to meet rapid technological developments, propel growth for our customers, and innovate the future of power.

PRECISION | POWER | PERFORMANCE

For international contact information, visit advancedenergy.com.

Advanced Energy

powersales@aei.com(Sales Support) productsupport.ep@aei.com(Technical Support) +1 888 412 7832 Specifications are subject to change without notice. Not responsible for errors or omissions. ©2020 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, and AE® are U.S. trademarks of Advanced Energy Industries, Inc.