PRELIMINARY

Am386°SE

High-Performance, Low-Power,
32-Bit Embedded Microprocessor

1

Advanced
Micro
Devices

DISTINCTIVE CHARACTERISTICS
Member of Am386 E CPU Series
— Am386 CPU Core

— Designed for embedded applications
— Socket compatible with 386SX processor

® Industry standard architecture aliows use of
existing peripheral support chips, development
tools, and application software

® |deal for embedded applications
— Low power consumption

— 3-5 V operation {25 MHz)
— Fully static operation
® High performance
— 25- and 33-MHz operating frequencies
— 32-bit internal architecture
— Four levels of hardware-enforced protection

Optimized for the cost-sensitive embedded
marketplace

— 16-bit data plan

— Real and protected mode operation without
paging

— Full Segmentation Unit and Descriptor Table
support

Supports world’s largest software base for x86
architectures

Compatible with Microsoft at Work™ and
Novell NEST embedded software

Coprocessor interface; supports
387SX-compatible math coprocessor

Advanced packaging options
— 100-pin Plastic Quad Flat Pack

— 100-pin Thin Quad Flat Pack
Extended temperature versions available
Based on AMD® advanced CMOS technology

xGHYOSIAWYx
i TSR

Publication#: 18420 Rev B Amsndment:/0
Issue Date. June 1994

z‘ AMD

PRELIMINARY

BLOCK DIAGRAM

Segmentation Unit Bus Control :-'L?_;D
/ NMI,
Effective AddressBus /. > 3-Input Request | ERROR,
Adder Prioritizer BUSY,
32 RESET,
HLDA,
; i FLT
~ Descriptor
Effective Address Bus _/ > Registers 2
7 32
Limi_t and
Protection _1'> Atglg\ne
Test Unit
) A
3
a
/\ g BHE, BLE
& Address = a3 A1
S Driver
- o)
2 3
fa Q WG,
3 D/C,
A 5 Pipeline/ W/R,
[internal Control Bus & > Bus Size LOCK,
A 4 g A Control [P ADS,
@ NA,
£ READY
MUX/
2 Trans
Barel ceivers 4> D15-DO
Shifter, v Prefetch/
Adder Decode and —— Instruction Limit 32
Sequencing Decoder Checker /\
Multiply/
Divide iﬁ‘;‘:
Code .
Control 3-Decoded (giream 183}:
) ROM Instruction
Register Queus Queue
File
ALU .
Control Control Instruction 32 Bit Instruction
Predecode Prefetch
ALU £
Dedicated ALU Bus /
/ 32
18420A-001

Am386SE Microprocessor

PRELIMINARY

AMD n

LOGIC SYMBOL
2X Clock —N CLK2 -
FLT je— Float
Data Bus < 16 > D15-DO
PEREQ #—— }
(Math
< 23 A23-A1 ERROR p— » Coprocessor
Control
Address Bus 9 BUSY)
< 2 BLE, BHE
\ Am386SE NMI fe—)
Microprocessor
(—— WR
RESET #—— » Interrupt Control
4+—— DIC INTR [&——)
Bus Cycle <
Definition — Mo HLDA —> Bus
Arbitration
| «— [OcK HOLD j&— Control
ADS NA READY
ADS NA READY

o

Bus Cycle Control

e

18420A-002

FUNCTIONAL DESCRIPTION
True Static Operation

The Am386SE microprocessor incorporates a true
static design. Unlike dynamic circuit design, the
Am3B86SE CPU eliminates the minimum operating
frequency restriction. It may be clocked from its maxi-
mum speed of 33 MHz all the way down to 0 MHz
(DC). System designers can use this feature to design
energy efficent embedded control devices.

Standby Mode

This true static design allows for a standby mode. Atany
operating speed (33 to 0 MHz), the Am386SE
microprocessor will retain its state (i.e., the contents of
all its registers). By shutting off the clock completely, the
device enters standby mode. Since power consumption
is proportional to clock frequency, operating power
consumption is reduced as the frequency is lowered. In
standby mode, typical current draw is reduced to less
than 20 pA at DC.

Not only does this feature improve battery life, butit also
simplifies the design in the following ways:

1. Eliminates the need for software in the BIOS to save
and restore the contents of registers.

2. Allows simpler circuitry to control stopping of the
clock since the system does not need to know what
state the processor is in.

Lower Operating Icc

True static design also allows lower operating Icc when
operating at any speed.

Performance On Demand (Am386SE CPU)

The Am386SE microprocessor retains its state at any
speed from 0 MHz (DC) to its maximum operating
speed. With this feature, system designers may vary the
operating speed of the system to extend the battery life
in portable systems.

For example, the system could operate at low speeds
during inactivity or polling operations. However, upon
interrupt, the system clock can be increased up to its
maximum speed. After a user-defined time-out period,
the system can be returned to a low (or 0 MHz) operating
speed without losing its state. This design maximizes
battery iife while achieving optimal performance.

Am386SE Microprocessor

n AMD

PRELIMINARY

CONNECTION DIAGRAMS
Top Side View—100-L.ead Plastic Quad Flat Pack and Thin Quad Flat Pack

1 A4
1 A3

[™ T2} ~

sud833885888555 8825288 483

Q Rin

8885883885888 %5 883382 ERR
Do 1@ 75
Vegs] 2 74
HLDA] 3 73
HOLD] 4 72
VSS[:: 5 71
NA (] s 70
READY [} 7 69
Vec] 8 68
Vee T4 9 67
Vee] 10 66
Vgs] 11 65
Vgs [12 64
Vss] 13 63
Vgs [] 14 62
CLK2 [15 61
ADS [] t6 60
BLE (] 17 59
A1 [] 18 58
BHE [] 19 57
NC] 20 56
Vee] 21 55
Vgg] 22 54
Mo] 23 53
DIC] 24 52
WRI] 25 51

SRNLTI59RIBYEHEBIITYIRILYLLFELS

(j} DUO000000UD0000U00u0gooUn

EFEEEITE TELFFEEEE R

] %m EE -

Notes:

Pin 1 is marked for orientation.
NC = Not connected; connection of an NC pin may cause a malfunction or incompatibility
with future versions of the Am386SE microprocessor.

Am386SE Microprocessor

PRELIMINARY

AMD a

CONNECTION DIAGRAMS (continued)
Pin Side View—100-Lead Plastic Quad Flat Pack and Thin Quad Flat Pack

\D

] A2
] A3
] A4
[] A5
1 A6
] A7
1 Vee
[] A8
1 A9
1 A10
1 A1
] A12
[] Vss
] A13
] A14
] A15
] Vss
[] Vss
] Vee
1 A16
g Voo
A17
] A18
] A19
] A20

[T

E°F %Fmeg_umwu o3 9

CSEeeo SR lr s 88899900888

Q min

CREAS-YBIBELRILIITIIICLLSLER
WH{] 25 51
DIC] 24 52
MG [] 23 53
Vss[] 22 54
Vee [21 55
NC [20 56
BHE [| 19 57
A1 18 58
BLE 17 59
ADS [] 16 60
CLk2 [] 15 61
Vss [14 62
Vss [] 13 63
Vss [] 12 64
Ves (] 11 65
Vee [10 66
Vee [] 9 67
Vec (] 8 68
READY [| 7 69
NA[] 6 70
Vss[] 5 71
HOLD (] 4 72
HLDA [] 3 73
Ves[] 2 74
DO} 1@ 75

.8_8858838%‘68%85£338%88&?3R2

(jk O000gUguooggouoogguuouuog

68>3>38588'5>‘<388§§g>’3><‘3g§gggéﬁg

Notes:

Pin 1 is marked for orientation.

NC = Not connected; connection of an NC pin may cause a malfunction or incompatibility
with future versions of the Am386SE microprocessor.

/

Am386SE Microprocessor

s O

PRELIMINARY

PIN DESIGNATION TABLES (sorted by Functional Grouping)

Address Data Control NC Vee Vss
Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin No. | Pin No. | Pin No.
Al 18 Do 1 ADS 16 20 8 2
A2 51 DA 100 BHE 19 27 9 5
A3 52 D2 99 BLE 17 29 10 1
A4 53 D3 96 BUSY 34 30 21 12
A5 54 D4 95 CLK2 15 31 32 13
A6 55 DS 94 DfC 24 43 39 14
A7 56 D6 93 ERROR 36 44 42 22
A8 ot 07 92 FLT 28 45 48 35
A9 59 DB 0 HLDA 3
9 46 57 41
A10 60 D HOLD 4
A1 61 9 89 47 69 49
INTR 40
D10 88 N 71 50
A12 62 LOCK 26
D1t 87 a4 63
A13 64 Mo 23
Al4 65 D12 86 A 91 67
NA 6
A15 66 D13 83 NMI 8 o7 68
A1 70 D14 82 PEREQ 37 77
D15 81
A7 72 AEADY 7 78
ﬁlg ;f RESET 33 85
98
A20 75 WR 2
A21 76
A22 79
A23 80
PIN DESIGNATION TABLES (sorted by Pin Number)
Pin No. | Pin Name | Pin No. | Pin Name | Pin No. | Pin Name | Pin No. | Pin Name | Pin No. | Pin Name
1 DO 21 Vee 41 Vss 61 Al 81 D15
2 Vss 22 | Vss 42 Vee 62 A12 82 D14
3 HLDA 23 Mio 43 NC 63 Vss 83 D13
4 HOLD 24 D/C 44 NC 64 A13 84 Vee
5 Vss 25 WR 45 NC 65 Al4 85 Vss
6 NA 26 LOCK 46 NG 66 Al5 86 D12
7 READY 27 | NC 47 NC 67 Vss 87 D11
8 Vee 28 FLT 48 Vee 68 Vss 88 D10
9 Vee 29 NC 49 Vss 69 Vee 89 D9
10 Vee 30 NC 50 Vss 70 Al6 90 D8
18 Vss 31 NC 51 A2 71 Vee o1 Vee
12 Vss 32 Vee 52 A3 72 Al7 g2 D7
13 Vss 33 RESET 53 A4 73 A18 93 D6
14 Vss 34 BUSY 54 A5 74 A19 94 D5
15 CLK2 35 Vss 55 A6 75 A20 95 D4
16 ADS 36 | ERROR 56 A7 76 A21 96 D3
17 BLE 37 PEREQ 57 Vee 77 Vss 97 Vee
18 Al 38 NMI 58 AB 78 Vss 98 Vss
19 BHE 39 Voo 59 A9 79 A22 99 D2
20 NC 40 INTR 60 A10 80 A23 100 D1
6 Am386SE Microprocessor
Tt T

L]

PRELIMINARY AMDa

ORDERING INFORMATION
Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed
by a combination of the elements below.

AM386 -25 K Cc
Lt s T

TEMPERATURE RANGE
C = Commercial (Tcase 0°C to +100°C)
| = Extended Temperature (Tcasg —40°C to +100°C)

PACKAGE TYPE

K = 100-Pin Plastic Quad Flat Pack (PQFP/PQB)
V = 100-Pin Metric Thin Quad Flat Pack (TQFP/PQT)

SPEED OPTION
—25 = 25 MHz
-33 = 33 MHz

DEVICE NUMBER/DESCRIPTION
Am386SE High-Performance 32-Bit Embedded
Microprocessor with 16-Bit Data Bus

Valid Combinations
Valid Combinations

25KC Valid Combinations list configurations planned to
25K| be supported in volume for this device. Consult

AM386SE the local AMD sales office to confirm availability of
25vC specific valid combinations and to check on newly
25VI released combinations.
33KC

Am386SE Microprocessor 7

u AMD

PRELIMINARY

PIN DESCRIPTIONS

A23~A1
Address Bus (Outputs)

Outputs physical memory or port I/O addresses.

ADS
Address Status (Active Low; Output)

Indicates that a valid bus cycle definition and address

(W/R, D/C, M/IO, BHE, BLE, and A23-A1) are being
driven at the Am386SE microprocessor pins.

BHE, BLE
Byte Enables (Active Low; Outputs)

Indicate which data bytes of the data bus take part
in a bus cycle.

BUSY
Busy {Active Low; Input)

Signals a busy condition from a processor extension.
CLK2

CLK2 (\nput)

Provides the fundamental timing for the Am386SE
microprocessor.

D15-D0
Data Bus (Inputs/Outputs)

Inputs data during memory, I/O, and interrupt acknowl-
edge read cycles; outputs data during memory and I/O
write cycles.

D/C
Data/Control (Output)
A bus cycle definition pin that distinguishes data cycles,

either memory or /O, from control cycles which are:
interrupt acknowledge, halt, and code fetch.

ERROR
Error (Active Low; Iinput)

Signals an error condition from a processor extension.

FLT
Float (Active Low; Input)

An input which forces all bidirectional and output sig-
nals, including HLDA, to the three-state condition.

HLDA
Bus Hold Acknowledge (Active High; Output)

Output indicates that the Am386SE microprocessor has
surrendered control of its logical bus to another bus
master.

HOLD
Bus Hold Request (Active High; Input)

Input allows another bus master to request control of the
local bus.

INTR
Interrupt Request {Active High; Input)
A maskable input that signals the Am386SE micropro-

cessor to suspend execution of the current program and
execute an interrupt acknowiedge function.

LOCK
Bus Lock (Active Low; Output)

Abus cycle definition pin that indicates that other system

bus masters are not to gain control of the system bus
while it is active.

M/
Memory/lO (Output)

A bus cycle definition pin that distinguishes memory
cycles from input/output cycles.

NA
Next Address (Active Low; Input)

Used to request address pipeline.

NC
No Connect

Should always be left unconnected. Connection of a NC
pin may cause the processor to malfunction or be
incompatible with future steppings of the Am386SE
microprocessor.

NMI
Non-Maskable Interrupt Request
(Active High; Input)

A non-maskable input that signals the Am386SE
microprocessor to suspend execution of the current pro-
gram and execute an interrupt acknowledge function.

PEREQ
Processor Extension Request (Active High; input)

Indicates that the processor has data to be transferred
by the Am386SE microprocessor.

READY
Bus Ready (Active Low; Input)

Terminates the bus cycle.

8 Am386SE Microprocessor

I

PRELIMINARY

amp £

RESET
Reset (Active High; Input)

Suspends any operation in progress and places the
Am386SE microprocessor in a known reset state.

Vee
System Power (Input)

Provides the 3.0-5 V nominal DC supply input.

Vss
System Ground (Input)

Provides the 0-V connection from which all inputs and
outputs are measured.

WR
Write/Read (Output)

A bus cycle definition pin that distinguishes write cycles
from read cycles.

Am386SE Microprocessor

n AMD

PRELIMINARY

Am386SE ARCHITECTURE OVERVIEW

The Am386SE microprocessor is code compatible with
the Am386DE, 286, and 8086 microprocessors. System
manufacturers can provide Am386DE CPU-based
embedded controllers optimized for performance and
Am386SE CPU-based embedded controllers optimized
for cost, both sharing the same operating systems and
application software. Systems based on the Am386SE
microprocessor can access the world’s largest existing
microcomputer software base.

Instruction pipelining, high-bus bandwidth, and a very
high-performance ALU ensure short average instruction
execution times and high system throughput. The
Am386SE CPU is capable of execution at sustained
rates of 2.5-3.0 million instructions per second (MIPS).

The Am386SE CPU offers on-chip testability and
debugging features. Four breakpoint registers allow
conditional or unconditional breakpoint traps on code
execution or data accesses for powerful debugging of
even ROM-based systems.

Base Architecture

The Am386SE microprocessor consists of a central pro-
cessing unit, a Memory Management Unit, and a bus
interface.

The central processing unit consists of the execution
unit and the instruction unit. The execution unit contains
the eight 32-bit general purpose registers which are
used for both address calculation and data operations
and a 64-bit barrel shifter used to speed shift, rotate,
multiply, and divide operations. The instruction unit
decodes the instruction op-codes and stores theminthe
decoded instruction queue for immediate use by the
execution unit.

The segmentation unit provides four levels of protection
for isolating and protecting applications and the operat-
ing system from each other. The hardware enforced
protection allows the design of systems with a high
degree of integrity.

The Am386SE microprocessor has two modes of
operation: Real Address Mode (Rea!l Mode) and

Protected Address Mode (Protected Mode). In Real
Mode the Am386SE CPU operates as a very fast 8086,
but with 32-bit extensions, if desired. Real Mode is
required primarily to set up the processor for Protected
Mode operation.

Finally, to facilitate high-performance system hardware
designs, the Am386SE microprocessor bus interface
offers address pipelining and direct Byte Enable signals
for each byte of the data bus.

Register Set

The Am386SE microprocessor has 30 registers as
shown in Figure 1. These registers are grouped into the
following seven categories:

General Purpose Registers: The eight 32-bit general
purpose registers are used to contain arithmetic and
fogical operands. Four of these (EAX, EBX, ECX, and
EDX) can be used sither in their entirety as 32-bit regis-
ters, as 16-bit registers, or split into pairs of separate
8-bit registers.

Segment Registers: Six 16-bit special purpose regis-
ters select, at any given time, the segments of memory
that are immediately addressable for code, stack, and
data.

Flags and Instruction Pointer Registers: The two
32-bit special purpose registers in Figure 1 record or
control certain aspects of the Am386SE microprocessor
state. The EFLAGS register inciudes status and control
bits that are used to reflect the outcome of many
instructions and modify the semantics of some
instructions. The Instruction Pointer (EIP) is 32-bits
wide. The EIP controls instruction fetching, and the
processor automatically increments it after executingan
instruction.

Control Registers: The CR0O 32-bit control register is
used to control the global nature of the Am386SE micro-
processor. The CRO register contains bits that set the
different processor modes (Protected, Real, and Copro-
cessor Emulation).

10 Am386SE Microprocessor

PRELIMINARY

AMD :l

31 1615 8 7 0
AH A[X AL
BH B|X BL
CH C{X CL
DH D[X DL
sl
DI
BP
SP
15 0
31 16 15 0
FLAGS
1P
31 16 15 9
| MSW
[
47 16 15 0
63 48
31 0

Linear Breakpoint Address 0

Linear Breakpoint Address 1
Linear Breakpoint Address 2
Linear Breakpoint Address 3

ANV,
/A A,

Breakpoint Status

Breakpoint Control

Reserved for future use—do not use.

EAX
EBX
ECX
EDX
ESI

EDI

EBP
ESP

Ccs
ss
DS
ES
FS
GS

EFLAGS |
EIP

CRO
CRt

GDTR
IDTR

LDTR

m
DRO
DR1
DR2
DR3
DR4

DRS
DR8&

DR7

Figure 1. Am386SE Microprocessor Registers

General Purpose Registers

Segment Registers

Flags & Instruction Pointer

Control Registers

System Address Registers

Debug Registers

18420A-003

-

Am386SE Microprocessor

1"

a AMD

PRELIMINARY

System Address Registers: These four special regis-
ters reference the tables or segments supported by
the B80286/Am386SE/Am386DE CPU's protection
model. These tables or segments are

GDTR (Global Descriptor Table Register)
IDTR (interrupt Descriptor Table Register)
LDTR (Local Descriptor Table Register)
TR (Task State Segment Register)

Debug Registers: The six programmer accessible
debug registers provide on-chip support for debugging.
The use of the debug registers is described in the sec-
tion Debugging Support.

EFLAGS Register

The flag register is a 32-bit register named EFLAGS.
The defined bits and bit fields within EFLAGS, shown in
Figure 2, control certain operations and indicate the sta-
tus of the Am386SE microprocessor. The lower 16 bits
(bits 15-0) of EFLAGS contain the 16-bit flag register
named FLAGS. This is the default flag register used
when executing 8086, 80286, or real mode code. The
functions of the flag bits are given in Table 1.

Control Registers

The Am386SE microprocessor has a control register of
32 bits, CRO, to hold the machine state of a global
nature. This register is shown in Figure 1 and Figure 2.
The defined CRO bits are described in Table 2.

Instruction Set N :

The instruction set is divided into nine categories of
operations:
Data Transfer
Arithmetic
Shift/Rotate
String Manipulation
Bit Manipulation
Control Transfer
High-Level Language Support
Operating System Support
Processor Control

These instructions are listed in the Instruction Set Clock
Count Summary (pages 72 through 86).

Status Flags:
Overflow
Sign ~
Zero M
Special Fields: Aux Carry
/O Privilege Level Parity
Nested Task Carry
1716151141312 110 9 8 |7 |6 5 J4 3 J2 1 lo_
. v v 9 L 4 L
7
A RF] 0 |NT IOfL OF |OF| IF | TF|SF|ZF| o |AF]| 0 [PF| 1t |CF| EFLAGS
Control Flags:
Trap
Interrupt
Direction
Resume
Protection Enable
Monitor Coprocessor
Emulate Coprocessor
Task Switched ;
l Y ¥ Y q
: Z
31 . 16l 15 0 [
MSW 18420A-004

Figure 2, Status and Control Register Bit Functions

12 Am386SE Microprocessor

PRELIMINARY AMDn

Table 1. Flag Definitions

Bit Position Name Function

0 CF Carry Flag—Set on high-order bit carry or borrow; cleared otherwise.

2 PF Parity Flag—Set if low-order 8 bits of result contain an even number of 1 bits;
cleared otherwise.

4 AF Auxiliary Carry Flag—Set on carry from or borrow to the low-order 4 bits of
AL; cleared otherwise.

6 ZF Zero Flag—Set if result is zero; cleared otherwise.

7 SF Sign Flag—Set equal to high-order bit of result (0 if positive, 1 if negative).

8 TF Single-Step Flag—Once set, a single-step interrupt occurs after the next
instruction executes. TF is cleared by the single-step interrupt.

9 IF Interrupt-Enable Flag—When set, maskable interrupts will cause the CPU to
transfer control to an interrupt vector specified location.

10 DF Direction Flag—Causes string instructions to auto-increment (default) the
appropriate index registers when cleared. Setting DF causes auto-decrement.
Overflow Flag—Set if the operation resulted in a carry/borrow into the sign bit

1" OF (high-order bit) of the result but did not result in a carry/borrow out of the high-
order bit or vice-versa.
1/0 Privilege Level—Indicates the maximum CPL permitted to execute /O
instructions without generating an Exception 13 fault or consuiting the /O

12,13 IoPL permission bit map while executing in protected mode.

14 NT Nested Task—Indicates that the execution of the current task is nested within
another task.
Resume Flag—Used in conjunction with debug register breakpoints. It is

16 RF checked at instruction boundaries before breakpoint processing. If set, any
debug fault is ignored on the next instruction.

Table 2. CRO Definitions
Bit Position Name Function

Protection Mode Enable—Places the Am386SE microprocessor into pro-
tected mode. If PE is reset, the processor operates again in Real Mode. PE

0 PE may be set by loading MSW or CRO. PE can be reset only by loading CRO;
it cannot be reset by the LMSW instruction.

4 MP Monitor Coprocessor Extension—Allows WAIT instructions to cause a
processor extension Not Present exception (number 7).
Emulate Processor Extension—Causes a processor extension Not Present

2 EM exception (number 7) on ESC instructions to allow emulating a processor
extension.
Task Switched—indicates the next instruction using a processor extension will

3 TS cause Exception 7, allowing software to test whether the current processor

extension context belongs to the current task.

Am386SE Microprocessor 13

a AMD

PRELIMINARY

All Am386SE microprocessor instructions operate on
either 0, 1,2, or 3 operands; an operand resides in areg-
ister, in the instruction itself, or in memory. Most zero
operand instructions (e.g., CLI, STI) take only one byte.
One operand instruction generally is two bytes long. The
average instruction is 3.2 bytes long. Since the
Am386SE CPU has a 16-byte prefetch instruction
queue, an average of five instructions will be prefetched.
The use of two operands permits the following types of
common instructions:

Register to Register

Memory to Register

Immediate to Register

Memory to Memory

Register to Memory

Immediate to Memory
The operands can be either B, 16, or 32 bits long. As a
general rule, when executing code written for the
Am386SE microprocessor (32-bit code), operands are
8 or 32 bits; when executing existing 8086 or 80286
code (16-bit code), operands are 8 or 16 bits. Prefixes

can be added to all instructions which override the
default length of the operands (i.e., use 32-bit operands
for 16-bit code, or 16-bit operands for 32-bit code).

Memory Organization

Memory on the Am386SE microprocessor is divided
into 8-bit quantities (Bytes), 16-bit quantities (Words}),
and 32-bit quantities (Dwords). Words are stored in two
consecutive bytes in memory with the fow-order byte at
the lowest address. Dwords are stored in four consecu-
tive bytes in memory with the low-order byte at the low-
est address. The address of a Word or Dword is the byte
address of the low-order byte.

In addition to these basic data types, the Am386SE
microprocessor supports a larger unit of memory in
segments. Memory can be divided up into one or more
variable length segments, which can be swapped to disk
or shared between programs. The Am386SE CPU sup-
ports segmentation in order to provide maximum flexibil-
ity to the system designer. Segmentation is useful for
organizing memory in logical modules, and, as such, isa
tool for the application programmer.

Effective Address Calculation
Index
Base Displacement
Scale
1,2,4,8 15 ¢
+ BHE-BLE
A23-A1
Physical
a2 Effective Address Memory
Z N
15 2 0 7
Segmentation 24 24,
R Logical Address Unit 4
Selector P |14, . Physical
L ’ . Address
Descriptor
Segment Register Index
18420A~005
Figure 3. Address Translation
14 Am386SE Microprocessor -

.

PRELIMINARY

AMD n

Address Spaces

The Am386SE microprocessor has two types of
address spaces: logical and physical. A logical address
(also known as a virtual address) consists of a selector
and an offset. A selector is the contents of a segment
register. An offset is formed by summing all of the
addressing components (Base, index, Displacement)
discussed in the section Addressing Modes, into an
effective address. This effective address, along with the
selector, is known as the logical address. Each task on
the Am386SE CPU has a maximum of 16K (214-1)
selectors.

The segmentation unit translates the logical address
space into a 32-bit physical address space. The 32-bit
physical address is then truncated into a 24-bit physical
address. The physical address is what appears on the
address pins. The total address space of the Am386SE
CPU is 16 Mbytes.

The primary differences between Real Mode and Pro-
tected Mode are how the segmentation unit performs
the translation of the logical address into the physical
address and the size of the address space. In Real
Mode, the segmentation unit shifts the selector left four
bits and adds the result to the effective address to form
the physical address. This physical address is limited to
1 Mbyte.

In protected mode, every selector has a logical base
address associated with it that can be up to 32 bits in
length. This 32-bit logical base address is added to the
effective address to form a final 32-bit physical address.
This address reflects physical memory and is truncated
so that only the lower 24 bits of this address are used to
address the 16-Mbyte memory address space.

Figure 3 shows the relationship between the various
address spaces.

Segment Register Usage

The main data structure used to organize memory is the
segment. On the Am386SE CPU, segments are vari-
able sized blocks of physical addresses which have cer-
tain attributes associated with them. There are two main
types of segments, code and data. The segments are of
variable size and can be as small as 1 byte oras large as
16 Mbytes.

In order to provide compact instruction encoding and
increase processor performance, instructions do not
need to explicitly specify which segment register is
used. The segment register is automatically chosen
according to the rules of Table 3 (Segment Register
Selection Rules). In general, data references use the
selector contained in the DS register; stack references

use the SS register; and, instruction fetches use the CS
register. The contents of the Instruction Pointer provide
the offset. Special segment override prefixes allow the
explicit use of a given segment register and override the
implicit rules listed in Table 3. The override prefixes also
allow the use of the ES, FS, and GS segment registers.

There are no restrictions regarding the overlapping of
the base addresses of any segments. Thus, all six seg-
ments could have the base address set to zero and
create a system with 16-Mbyte physical address space.
This creates a system where the virtual address space is
the same as the physical address space. Further details
of segmentation are discussed in the section Protected
Mode Architecture on page 24.

Addressing Modes

The Am3B6SE microprocessor provides a total of eight
addressing modes for instructions to specify operands.
The addressing modes are optimized to allow the effi-
cient execution of high-level languages such as C and
FORTRAN, and they cover the vast majority of data ref-
erences needed by high-level languages.

Register and Inmediate Modes

Two of the addressing modes provide for instructions
that operate on register or immediate operands.

Register Operand Mode: The operand is located in
one of the 8-, 16-, or 32-bit general registers.

Immediate Operand Mode: The operandis included in
the instruction as part of the op-code.

32-bit Memory Addressing Modes

The remaining six modes provide a mechanism for
specifying the effective address of an operand. The
physical address consists of two components: the seg-
ment base address and an effective address. The effec-
tive address is calculated by summing any combination
of the following three address elements (see Figure 3).

Displacement: an 8-,16-, or 32-bitimmediate value, foi-
lowing the instruction.

Base: The contents of any general purpose register.
The base registers are generally used by compilers to
point to the start of the local variable area.

Index: The contents of any general purpose register
except for ESP. The index registers are used to access
the elements of an array or a string of characters. The
index register’s value can be multiplied by a scale factor,
either 1, 2, 4, or 8. The scaled index is especially useful
for accessing arrays or structures.

Am386SE Microprocessor 15

n AMD

PRELIMINARY

Table 3. Segment Register Selection Rules

STOS, REP MOVS Instructions

Type Of Memory Reference Implied (Default) Segment Use Segment Override Prefixes Possible
Code Fetch Ccs None
Destination of PUSH, PUSHF, INT, 8S None
CALL, PUSHA Instructions
Source of POP, POPA, POPF, sSs None
IRET, RET Instructions
Destination of STOS, MOVE, REP, ES None

Other Data References, with

Effective Address Using Base

Register of:
[EAX] DS CS, SS, ES, F§,GS
[EBX] DS CS, SS,ES, FS,GS
[ECX] DS CS, SS,ES, FS,GS
[EDX] DS CS, SS, ES, FS, GS
[ESI] DS CS, SS, ES, FS, GS
[EDI] DS CS, SS, ES, FS, GS
[EBP] 8§S CS, SS, ES, FS,GS
[ESP] S8 Cs, SS, ES, FS, GS

Combinations of these three components make up the
six additional addressing modes.

1. Direct Mode: The operand's offset is contained as
part of the instruction as an 8-, 16-, or 32-bit
displacement.

2. Register Indirect Mode: A Base register contains
the address of the operand.

3. Based Mode: A Base register’s contents are added
to a Displacement to form the operand’s offset.

4. Scaled Index Mode: An Index register’s contents
are multiplied by a Scaling factor, and the result is
added to a Displacement to form the operand’s
offset.

5. Based Scaled Index Mode: The contents of an
Index register are multiplied by a Scaling factor, and
the result is added to the contents of a Base register
to obtain the operand's offset.

6. Based Scaled Index Mode with Displacement:
The contents of an Index register are multiplied by a
Scalingfactor, and the resultis added to the contents
of a Base register and a Displacement to form the
operand’s offset.

As shown in Figure 4, the Effective Address (EA) of an
operand is calculated according to the following
formula:

EA = BaseRegister + (INdexRagister x Scaling) + Displacement
There is no performance penalty for using any of these
addressing combinations, since the effective address
calculation is pipelined with the execution of other
instructions. The one exception is the simultaneous use
of Base and Index components which requires one addi-
tional clock.

Differences Between 16- and 32-bit Addresses

In order to provide software compatibility with the 8086
and the 80286, the Am386SE microprocessor can
execute 16-bit instructions in Real and Protected
Modes. The processor determines the size of the
instructions it is executing by examining the D bit in a
Segment Descriptor. If the D bit is 0, then all operand
lengths and effective addresses are assumed to
be16-bits long. If the Dbitis 1, then the default iength for
operands and addresses is 32 bits. In Real Mode the
default size for operands and addresses is 16 bits.

Regardless of the default precision of the operands or
addresses, the Am386SE microprocessor is able to
execute either 16 or 32-bitinstructions. This is specified
through the use of override prefixes. Two prefixes, the
Operand Length Prefix and the Address Length Prefix,
override the value of the D bit on an individual instruction
basis. These prefixes are automatically added by
assemblers.

The Operand Length and Address Length Prefixes can
be applied separately or in combination to any instruc-
tion. The Address Length Prefix does not allow
addresses over 64 Kbytes to be accessed in Real Mode.
A memory address which exceeds OFFFFH will resultin
a General Protection Fault. An Address Length Prefix
only allows the use of the additional Am386SE CPU
addressing modes.

When executing 32-bit code, the Am386SE CPU uses
either 8 or 32-bit displacements, and any register canbe
used as Base or Index registers. When executing 16-bit
code, the displacements are either 8 or 16-bits, and the
Base and index registers conform to the 80286 model.
Table 4 illustrates the differences.

16 Am386SE Microprocessor

[

PRELIMINARY

AMD n

Segment Registers
8S } Base Register I
GS
FSES | Index Register I
DS Selector
— CS —.ﬁ)
Scale
1,2,4,0r8
Y
| (Displacement
¥ (In Instruction)
Effective Segment
Address / Limit
Descriptor Registers Physical ~\
Address
Access Rights SS] Target Address
Access Rights GS |
Access Rights FS I gelected
t
Access Rights ES L egmen
Access Rights DS |
'T Access Rights CS
Gmit 1 1.__. >~ J/
Base Address Segment Base Address
Figure 4. Addressing Mode Calculations 18420A-006
Char: A byte representation of an ASCIl alphanumeric
Data Types or control character.

The Am386SE microprocessor supports all of the data
types commonly used in high-level languages.

Bit: A single bit quantity.
Bit Field: A group of up to 32 contiguous bits, which
spans a maximum of four bytes.

Bit String: A set of contiguous bits; on the Am386SE
microprocessor, bit strings can be up to 4 Gbits long.

Byte: A signed 8-bit quantity.

Unsigned Byte: An unsigned 8-bit quantity.

Integer (Word): A signed 16-bit quantity.

Long Integer (Dword): A signed 32-bit quantity. All
operations assume a 2’s complement representation.
Unsigned Integer (Word): An unsigned 16-bit quantity.
Unsigned Long Integer (Dword): An unsigned 32-bit
quantity.

Signed Quad Word: A signed 64-bit quantity.
Unsigned Quad Word: An unsigned 64-bit quantity.
Pointer: A 16- or 32-bit offset-only quantity which indi-
rectly references another memory location.

Long Pointer: A full pointer which consists of a 16-bit
segment selector and either a 16- or 32-bit offset.

String: A contiguous sequence of bytes, Words, or
Dwords. A string may contain between 1 byte 1o 4 Gbytes.
BCD: A byte (unpacked) representation of decimal dig-
its 0-9.

Packed BCD: A byte (packed) representation of two
decimal digits 0-9 storing one digit in each nibble.
When the Am386SE microprocessor is coupled with a
387SX math coprocessor, the following common
floating-point types are supported.

Floating Point: A signed 32-, 64-, or 80-bit real number
representation. Floating-point numbers are supported
by 387SX-compatible math coprocessors.

Am386SE Microprocessor 17

e\ amo

PRELIMINARY

Table 4. Base and Index Registers for 16- and
32-bit Addresses

16-Bit 32-Bit
Addressing Addressing
Base Register BX, BP Any 32-bit GP
Register
Index Register Sl, DI Any 32-bit GP
Register
Scale Factor None 1,2,4,8
Displacement 0, 8, 16 bits 0, 8, 32 bits

Figure 5 illustrates the data types supported by the
Am3B6SE microprocessor and a 387SX compatible
math coprocessor.

1/O Space

The Am386SE CPU has two distinct physical address
spaces: physical memory and I/O. Generally, peripher-
alsare placed in I/O space, although the Am386SE CPU
also supports memory-mapped peripherals. The /O
space consists of 64 Kbytes which can be divided into
64K 8-bit ports or 32K 16-bit ports, or any combination of
ports which add up to no more than 64 Kbytes. The
64-Kbyte /O address space refers to physical
addresses since /O instructions do not go through the
segmentation hardware. The M/IO pin acts as an addi-
tional address line, thus allowing the system designer to
easily determine which address space the processor is
accessing.

The I/O ports are accessed by the In and Out instruc-
tions, with the port address supplied as an immediate
8-bit constant in the instruction or in the DX register. All
8-bitand 16-bit port addresses are zero extended on the
upper address lines. The I/O instructions cause the
M/IO pin to be driven Low. /O port addresses 00F8H
through OOFFH are reserved for future use.

Interrupts and Exceptions

Interrupts and exceptions alter the normal program flow
in order to handle external events, report errors, or
report exceptional conditions. The difference between
interrupts and exceptions is that interrupts are used to
handle asynchronous external events while exceptions
handle instruction faults. Although a program can gen-
erate a software interrupt via an INT n instruction, the
processor treats software interrupts as exceptions.

Hardware interrupts occur as the result of an external
event and are classified into two types: maskable or
non-maskable. Interrupts are serviced after the execu-
tion of the current instruction. After the interrupt handler
is finished servicing the interrupt, execution proceeds
with the instruction immediately after the interrupted
instruction.

Exceptions are classified as faults, traps, or aborts,
depending on the way they are reported and whether or

not restart of the instruction causing the exception is
supported. Faults are exceptions that are detected and
serviced before the execution of the faulting instruction.
Traps are exceptions thatare reported immediately after
the execution of the instruction which caused the prob-
lem. Aborts are exceptions that do not permit the precise
location of the instruction causing the exception to be
determined.

Thus, when an interrupt service routine has been com-
pleted, execution proceeds from the instruction immedi-
ately following the interrupted instruction. On the other
hand, the return address from an exception fault routine
will always point to the instruction causing the exception
and willinclude any leading instruction prefixes. Table 5
summarizes the possible interrupts for the Am386SE
microprocessor and shows where the return address
points.

The Am386SE CPU has the ability to handle up to 256
different interrupts/exceptions. In order to service the
interrupts, a table with up to 256 interrupt vectors must
be defined. The interrupt vectors are simply pointers to
the appropriate interrupt service routine. In Real Mode,
the vectors are 4-byte quantities, a Code Segment plus
a 16-bit offset; in Protected Mode, the interrupt vectors
are B-byte quantities which are put in an Interrupt Des-
criptor Table. OQf the 256 possible interrupts, 32 are
reserved for future use and the remaining 224 are free to
be used by the system designer.

interrupt Processing

When an interrupt occurs, the following actions happen.
First, the current program address and Flags are saved
on the stack to allow resumption of the interrupted pro-
gram. Next, an 8-bit vector is supplied to the Am386SE
microprocessor which identifies the appropriate entry in
the interrupt table. The table contains the starting
address of the interrupt service routine. Then, the user
supplied interrupt service routine is executed. Finally,
when an IRET instruction is executed the old processor
state is restored and program execution resumes at the
appropriate instruction.

The 8-bit interrupt vector is supplied to the Am386SE
microprocessor in several different ways: exceptions
supply the interrupt vector internally; software INT
instructions contain or imply the vector; maskable hard-
ware interrupts supply the 8-bit vector via the interrupt
acknowledge bus sequence. Non-Maskable hardware
interrupts are assigned to interrupt vector 2.

Maskable Interrupt

Maskable interrupts are the most common way to
respond to asynchronous external hardware events. A
hardware interrupt occurs when the INTR is pulled High
and the Interrupt Flag bit (IF) is enabled. The processor
only responds to interrupts between instructions (string
instructions have an interrupt window between memory
moves that allows interrupts during long string moves).

18 Am386SE Microprocessor

PRELIMINARY

AMD n

+N +1 0
: Binary Z Z
Signed [TTT 11 Coded [TTV T TTT[TTITTTITTT
Byte Decimal b
Sign Bit 4 L I BCD) cD BCD
ign Bi BCD B
. Digit N Digit 1 Digit 0
Magnitude
+N +1 0
7 7 7
Unsigned [TTTTTT1 RN RRE] IRRERER] LARNREE
Byte ASCII s
L 1 Ascil ASCII ASCII
Magnitude Charactery Charactery Characterg
+1 0
0
15 14 87 , W ;, M 7
Signed [[TTITTHITTTTTTT TTT|T TTT[TTTVTI T[T
Word Packed BCD eoe
Sign Bit 4 L MsB l] L1
I Most Least
. 0S! eas
Magnitude Significant Significant
Digit Digit
+1 0 +N +1 0
s T 7/11?| TT 7/|1?| TTT 7|/1|5| TT1
; T T T
Unsigned [TI T [YT T[T T T[T Byts] ..
Word String
(I J
Magnitude
3 2 1 0 +2 Gbits -2 Gbits
- Sianed 31 " T 4515 * 0 210
igne LK) LBLILI LI LI LI B | LI retd LILILI .
Double I ! ! ! Bit g é
Word String
Sign Bit 4 L. MsB Bit0
| I—]
Magnitude
31 +3 +2 +1 0 0 31 +3 +2 +1 0 0
Unsignedlll|llllll|lll T[T T[T IrT Shot [TTV[TTTITV T[TV P [FIT [T I [TTT 111
Double 32-Bit
Word Pointer
L J 1 J
Magnitude Offset
7+ 45 44 43 +2 o+ 0 +5 +4 +3 +2 +1 0
63 48 47 32 3 1615 0 47 0
Signed Long [TTT[TIT[TT T[T TTI[TIT[TT T[T TT T TA I T T
Quad 48-Bit
Word Pointer
Sign Bit J L msB
i ! L I |
Magnitude Selector Offset
79 +9 +8 +7 +6 +5 +4 +3 +2 +1 0 0
Floating
— Point*
Sign Bit JI I |
Exponent Magnitude
+5 +4 +3 +2 +1 4]
O LA LARN LLNY LRN LRI AR RRRE RN RRSLRRILER]|
Bit Field
T 18420A—007
“— e
Note: 1 to 32 Bits —
*Supported by a 387SX-compatable math coprocessor
Figure 5. Am386SE Microprocessor Supported Data Types
Am386SE Microprocessor 19

n AMD

PRELIMINARY

Table 5. Interrupt Vector Assignments

Function Interrupt Instructions That Return Address Points Type
Number Can Cause Exception to Faulting Instruction
Divide Error 0 DIv, IDIV Yes FAULT
Debug Exception 1 Any Instruction Yes TRAP
NMI Interrupt 2 INT2 or NMI No NMI
One Byte Interrupt 3 INT No TRAP
Intetrupt on Overflow 4 INTO No TRAP
Array Bounds Check 5 BOUND Yes FAULT
Invalid Op-code 6 Any llilegal Instruction Yes FAULT
Device Not Available 7 ESC, WAIT Yes FAULT
Double Fault 8 Any instruction that can ABORT
generate an exception

Coprocessor Segment Overrun 9 ESC No ABORT
Invalid TSS 10 JMP, CALL, IRET, INT Yes FAULT
Segment Not Present 1 Segment Register Instructions Yes FAULT
Stack Fault 12 Stack References Yes FAULT
General Protection Fault 13 Any Memory References Yes FAULT
Reserved for Future Use 14
Coprocessor Error 16 ESC, WAIT Yes FAULT
Reserved for Future Use 17-32
Two Byte Interrupt 0-255 INT n No TRAP

Note: Some debug exceptions may report both traps on the previous instruction and faults on the next instruction.

When an interrupt occurs the processor reads an 8-bit
vector supplied by the hardware which identifies the
source of the interrupt (one of 224 user defined
interrupts).

Interrupts through interrupt gates automatically reset IF
bit, disabling INTR requests. Interrupts through Trap
Gates leave the state of the |F bit unchanged. Interrupts
through a Task Gate change the IF bit according to the
image of the EFLAGs register in the task’s Task State
Segment (TSS). When an IRET instruction is executed,
the original state of the IF bit is restored.

Non-Maskable Interrupt

Non-maskable interrupts provide a method of servicing
very high priority interrupts. When the NM! inputis pulled
High it causes an interrupt with an internally supplied
vector value of 2. Unlike a normal hardware interrupt, no
interrupt acknowledgment sequence is performed for an
NMI.

While executing the NMI servicing procedure, the
Am386SE microprocessor will not service any further
NMI request or INT requests until an Interrupt Return
(IRET) instruction is executed or the processor is reset.
1f NMI occurs while currently servicing an NMI, its pres-
ence will be saved for servicing after executing the first

IRET instruction. The IF bit is cleared at the beginning of
an NMI interrupt to inhibit further INTR interrupts.

Software Interrupts

A third type of interrupt/exception for the Am386SE CPU
is the software interrupt. An INT n instruction causes the
processor to execute the interrupt service routine
pointed to by the nth vector in the interrupt table.

A special case of the two byte software interrupt INT nis
the one byte INT 3, or breakpoint interrupt. By inserting
this one byte instruction in a program, the user can set
breakpoints in his program as a debugging tool.

A final type of software interrupt is the single-step inter-
rupt. It is discussed in the section Single-Step Trap on
page 22.

Interrupt and Exception Priorities

Interrupts are externally generated events. Maskable
Interrupts (on the INTR input) and Non-Maskable
Interrupts (on the NMI input) are recognized at
instruction boundaries. When NMi and maskable INTR
are both recognized at the same instruction boundary,
the Am386SE microprocessor invokes the NMI service
routine first. If maskable interrupts are still enabled after
the NM!I service routine has been invoked, then the

20 Am386SE Microprocessor

PRELIMINARY

AMD n

Am386SE CPU will invoke the appropriate interrupt
service routine.

Exception Checking Sequence

Asthe Am386SE microprocessor executes instructions,
it follows a consistent cycle in checking for exceptions.
Consider the case of the Am386SE microprocessor
having just completed an instruction. It then performs
the following checks before reaching the point where the
next instruction is completed. This cycle is repeated as
each instruction is executed, and occurs in parallel with
instruction decoding and execution.

1. Check for Exception 1 Traps from the instruction
just completed (single-step via Trap Flag, or Data
Breakpoints set in the Debug Registers).

2. Check for external NMI and INTR.

3. Check for Exception 1 Faults in the next instruction
(Instruction Execution Breakpoint set in the Debug
Registers for the next instruction).

4. Check for Segmentation Faults that prevented
fetching the entire next instruction (Exceptions 11
and 13).

5. Check for Faults decoding the next instruction
{Exception 6 if illegal op-code; Exception 6 if in
Real Mode and attempting to execute an instruc-
tion for Protected Mode only; or Exception 13 if
instruction is longer than 15 bytes, or privilege
violation in Protected Mode (i.e., not at IOPL or at
CPL=0)).

6. If WAIT op-code, check if TS=1 and MP=1(Excep-
tion 7 if both are 1).

7. If ESCape op-code for math coprocessor, check if
EM=1 or TS=1 (Exception 7 if either is 1).

8. If WAIT op-code or ESCape op-code for math
coprocessor, check ERROR input signal (Excep-
tion 16 if ERROR input is asserted).

9. Check each memory reference required by the
instruction for segmentation faults that prevent
transferring the entire memory quantity (Excep-
tions 11, 12, and 13).

Instruction Restart

The Am386SE microprocessor fully supports restarting
allinstructions after Faults. If an exception is detected in
the instruction to be executed (exception categories 4
through 10 in the previous Exception Checking
Sequence), the Am386SE microprocessor invokes the
appropriate exception service routine.

Double Fault

A Double Fault (Exception 8) results when the proces-
sor attempts to invoke an exception service routine for
the segment exceptions (10, 11, 12, or 13), but in the
process of doing so detects an exception.

Reset and Initialization

When the processor is initialized or Reset, the registers
have the values shown in Table 6. The Am386SE CPU
will then start executing instructions near the top of
physical memory, at location OFFFFFOH. When the first
intersegment Jump or Call is executed, address lines
A23-A20 will drop Low for CS-relative memory cycles,
and the Am386SE CPU will only execute instructions in
the lower 1 Mbyte of physical memory. This allows the
system designer to use a shadow ROM at the top of
physical memory to initialize the system and take care of
Resets.

Reset forces the Am386SE microprocessor to terminate
allexecution and local bus activity. No instruction execu-
tion or bus activity will occur as long as Reset is active.
Between 350, and 450 CLK2 periods after Reset
becomes inactive, the Am386SE microprocessor will
start executing instructions at the top of physical
memory.

Am386SE Microprocessor ral

a AMD

PRELIMINARY

Table 6. Register Values after Reset

Register Reset Value Notes

Flag Word (EFLAGS) uuuu0002H 1
Machine Status Word (CRO) uuuuyu10H

Instruction Pointer (EIP) Q000FFFOH

Code Segment (CS) FOOOH 2
Data Segment (DS) 0000H 3
Stack Segment (SS) 0000H

Extra Segment (ES) 0000H 3
Extra Segment (FS) 0000H

Extra Segment (GS) 0000H

EAX Register 0000H

EDX Register Component and Stepping ID

All Other Registers Undefined 6
Notes:

1. EFLAGS Register. The upper 14 bits of the EFLAGS register are undefined; all defined flag bits are zero.

2. The Code Segment register (CS) will have its Base Address set to OFFFFO000H and Limit set to OFFFFH.

3. The Data and Extra Segment registers (DS and ES) will have their Base Address set to 000000000H and Limit set to OFFFFH.
4. If self-test is selected, the EAX register should contain a 0 value. If a value of 0 is not found, the self-test has detected a

flaw in the part.

5. EDX register always holds a component and stepping identifier.

6. All undefined bits are ressrved for future use and should not be used.

Testability

The Am386SE microprocessor, like the Am386DE
microprocessor, offers testability features thatinclude a
self-test and direct access to the page translation cache.

Self-Test

The Am386SE microprocessor has the capability to per-
form a self-test. The self-test checks the function
of all of the Control ROM and most of the non-random
logic of the part. Approximately one-half of the
Am38B6SE CPU can be tested during self-test.

Self-Test is initiated on the Am386SE microprocessor
when the Reset pin transitions from High to Low, and the
BUSY pin is Low. The self-test takes about 220 clocks.
At the completion of self-test the processor performs
reset and begins normal operation. The part has suc-
cessfully passed self-test if the contents of the EAX are
zero, If the resuits of the EAX are not zero, then the self-
test has detected a flaw in the part.

Debugging Support

The Am3B6SE microprocessor provides several fea-
tures which simplify the debugging process. The three
categories of on-chip debugging aids are:

1. The code execution breakpoint op-code (0CCH).

2. The single-step capability provided by the TF bit in
the flag register.

3. The code and data breakpoint capability provided by
the Debug Registers DR3-DR0, DR6, and DR7.

Breakpoint Instruction

A single-byte software interrupt (INT 3) breakpoint
instruction is available for use by software debuggers.
The breakpoint op-code is 0CCH, and generates an
Exception 3 trap when executed.

Single-Step Trap

Ifthe single-step flag (TF, bit 8) in the EFLAGS register is
foundto be set at the end of an instruction, a single-step
exception occurs. The single-step exception is auto-
vectored to Exception 1.

Debug Registers

The Debug Registers are an advanced debugging fea-
ture of the Am3B6SE microprocessor. They allow data
access breakpoints as well as code execution break-
points. Since the breakpoints are indicated by on-chip
registers, an instruction execution breakpoint can be
placed in ROM code or in code shared by several tasks,
neither of which can be supported by the INT 3 break-
point op-code.

The Am386SE microprocessor contains six Debug
Registers, consisting of four breakpoint address regis-
ters and two breakpoint control registers. Initially after
reset, breakpoints are in the disabled state; therefore,
no breakpoints will occur unless the Debug Registers
are programmed. Breakpoints set up in the Debug Reg-
isters are auto-vectored to Exception 1. Figure 6 shows
the breakpoint status and control registers.

22 Am386SE Microprocessor

|

e —

PRELIMINARY

AMD n

REAL MODE ARCHITECTURE

When the processor is reset or powered up it is initial-
ized in Real Mode. Real Mode has the same base archi-
tecture as the 8086, but allows access to the 32-bit
register set of the Am386SE microprocessor. The
addressing mechanism, memory size, and interrupt
handling are all identical to the Real Mode on the 80286.

The default operand size in Real Mode is 16 bits, as in
the 8086. In order to use the 32-bit registers and addres-
sing modes, override prefixes must be used. In addition,
the segment size on the Am386SE microprocessor in
Real Mode is 64 Kbytes, so 32-bit addresses must have
a value less than 0000FFFFH. The primary purpose of
Real Mode is to set up the processor for Protected Mode
operation.

Memory Addressing

Physical addresses are formed in Real Mode by adding
the contents of the appropriate segment register which
is shifted left by four bits to an effective address. This
addition results in a 20-bit physical address or a 1-Mbyte
address space. Since segment registers are shifted left
by 4 bits, Real Mode segments always start on 16-byte
boundaries.

All segments in Real Mode are exactly 64-Kbytes long,
and may be read, written, or executed. The Am386SE
microprocessor will generate an Exception 13 if a data
operand or instruction fetch occurs past the end of a
segment.

Reserved Locations

There are two fixed areas in memory that are reserved in
Real Address Mode: the system initialization area and
the interrupt table area. Locations 00000H through
003FFH are reserved for interrupt vectors. Each one of
the 256 possible interrupts has a 4-byte jump vector
reserved for it. Locations OFFFFFOH through OFFFFFFH
are reserved for system initialization.

Interrupts

Many of the exceptions discussed in the Interrupts and
Exceptions section on page 20, are not applicable to
Real Mode operation; in particular, Exceptions 10 and
11 do not occur in Real Mode. Other exceptions have
slightly different meanings in Real Mode; Table 7
identifies these exceptions.

Shutdown and Halt

The HLT instruction stops program execution and pre-
vents the processor from using the local bus until
restarted. Either NMI, FLT, INTR with interrupts enabled
(IF=1), or Reset will force the Am386SE microprocessor
out of halt. Ifinterrupted, the saved CS:IP will point to the
next instruction after the HLT.

Shutdown will occur when a severe error is detected that
prevents further processing. In Real Mode, shut-down
can occur under two conditions:

1. Aninterrupt or an exception occurs (Exceptions 8 or
13) and the interrupt vector is larger than the inter-
rupt Descriptor Table.

2. A Call, INT, or Push instruction attempts to wrap
around the stack segment when SP is not even.

An NM! input can bring the processor out of shutdown if
the Interrupt Descriptor Table limit is large enough to
contain the NMl interrupt vector (at least 000FH) and the
stack has enough room to contain the vector and flag
information (i.e., SP is greater than 0005H). Otherwise,
shutdown can only be exited by a processor reset.

Table 7. Exceptions in Real Mode

Function Interrupt Related Return
Number Instructions Address Location

Interrupt table limit too small 8 INT vector is not within table limit. Before
Instruction

CS, DS, ES, FS, GS 13 Word memory reference with Before
Segment Overrun exception offset = OFFFFH. An attempt to Instruction

execute past the end of CS segment.

8S Segment Overrun exception 12 Stack Reference Before

beyond offset = OFFFFH. Instruction

Am386SE Microprocessor 23

n AMD

PRELIMINARY

LOCK Operation

The only instruction forms where the LOCK prefix is
legal on the Am386SE microprocessor are shown in
Table 8.

The LOCK prefix is not supported during repeat string
instructions.

Table 8. Legal Instructions for the LOCK Prefix

Op-Code Operands
(Dest. Source)
BIT Test and Mem, Reg/lmmed
SET/RESET/COMPLEMENT
XCHG Reg, Mem
XCHG Mem, Reg
ADD, OR, ADC, SBB Mem, Reg/Immed
AND, SUB, XOR
NOT, NEG, INC, DEC Mem

An Exception 6 will be generated if a LOCK prefix is
placed before any instruction form or op-code not listed
above. The LOCK prefix allows indivisible read/modify/
write operations on memory operands using the instruc-
tions above.

The LOCK prefix is not IOPL-sensitive onthe Am386SE
microprocessor. The LOCK prefix can be used at any
privilege level, but only on the instruction forms listed in
Table 8.

PROTECTED MODE ARCHITECTURE

The complete capabilities of the Am386SE micropro-
cessor are unlocked when the processor operates in
Protected Virtual Address Mode (Protected Mode). Pro-
tected Mode vastly increases the physical address
space to 4 Gb (232 bytes). In addition, Protected Mode
allows the Am386SE CPU to run all of the existing
Am386DE CPU (using only 16 Mb of physical memory),
80286, and 8086 CPU’s software, while providing a
sophisticated memory management and a hardware-
assisted protection mechanism. Protected Mode allows
the use of additional instructions specially optimized for
supporting multitasking operating systems. The base
architecture of the Am386SE microprocessor remains
the same; the registers, instructions, and addressing
modes described in the previous sections are retained.
The main difference between Protected Mode and Real
Mode from a programmer’s viewpoint is the increased
address space and a different addressing mechanism.

Addressing Mechanism

Like Real Mode, Protected Mode uses two components
to form the logical address: a 16-bit selector is used to
determine the linear base address of a segment, the
base address is added to a 32-bit effective address to
form a 32-bit physical address. The address is then
used as a 24-bit physical address.

The difference between the two modes lies in calculat-
ing the base address. In Protected Mode, the selectoris
used to specify an index into an operating system
defined table (see Figure 7). The table contains the
32-bit base address of a given segment. The physical
address is formed by adding the base address obtained
from the table to the offset.

Breakpoint 0 Debug Fault/Trap

Breakpoint 1 Debug Fault/Trap
Breakpoint 2 Debug Fault/Trap

Breakpoint 3 Debug Fault/Trap

Register Access Fault

Single-Step Debug Trap

Debug

Task Switch Debug Trap

Status

3l

Control

W///////////////ijlssleoW/// 83|82|B1|B0| DR6

Gi: Global Breakpoint Enable i 7]

15 14 13 3 2 10

Li: Local Breakpoint Enable i J

Local Exact Breakpoint Match
Global Exact Breakpoint Match

Globai Debug Register Access Detect

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Breakpoint
Control

ILEN3 I RW3 I LEN2I RWZJ LEN1 l RW1 I LENO I RWO WGDWGE|LE|G3|LSIG2IL2|G1IL1 |GO|L0| DR7

9 8 7 6 5§ 4 3 2

[LENi: Breakpoint Length i

Reserved for future use — do not use.

L RWi: Memory Access Qualifier i 18420A-008

Figure 6. Debug Registers

24 Am386SE Microprocessor

I

PRELIMINARY

AMD n

Segmentation

Segmentation is a method of memory management. It
provides the basis for software protection and is used to
encapsulate regions of memory that have common
attributes. For example, all of the code of a given pro-
gram could be contained in a segment, or an operating
system table may reside in a segment. All information
about each segment is stored in an 8-byte data structure
called a descriptor. All of the descriptors in a system are
contained in descriptor tables which are recognized by
hardware.

Terminology

The following terms are used throughout the discussion
of descriptors, privilege levels, and protection:

PL: Privilege Level—One of the four hierarchical priv-
ilege levels. Level 0 is the most privileged level
and level 3 is the least privileged.

RPL: Requestor Privilege Level—The privilege level
of the original supplier of the selector. RPL is
determined by the least two significant bits of a
selector.

DPL: Descriptor Privilege Level—This is the least
privileged level at which a task may access that
descriptor (and the segment associated with that

determined by bits 6:5 in the Access Right Byte of
a descriptor.

CPL: Current Privilege Level—The privilege level at
which a task is currently executing, which equals
the privilege level of the code segment being
executed. CPL can also be determined by
examining the lowest 2 bits of the CS register,
except for conforming code segments.

EPL: Effective Privilege Level—The effective privilege
level is the least privileged of the RPL and the
DPL. EPL is the numerical maximum of RPL and
DPL.

Task: One instance of the execution of a program. Tasks
are also referred to as processes.

Descriptor Tables

The descriptor tables define all of the segments which
are used in an Am386SE microprocessor system. There
are three types of tables which hold descriptors: the
Global Descriptor Table, Local Descriptor Table, and
Interrupt Descriptor Table. All of the tables are variable
length memory arays and can vary in size from 8 bytes
to 64 Kbytes. Each table can hold up to 8192 8-byte des-
criptors. The upper 13 bits of a selector are used as an
index into the descriptor table. The tables have registers
associated with them which hold the 32-bit physical

descriptor). Descriptor Privilege Level is pase address and the 16-bit limit of each table.
48/32 Bit Pointer Segment Limit
Selector Offset /
47/31 31/15 o]
Memory Operand T
Selected
Access Rights 16 Mbyte Segment
Limit l
»| Base Address
Segment Segment Base
Descriptor Address
18420A-009

Figure 7. Protected Mode Addressing

Am386SE Microprocessor 25

a AMD

PRELIMINARY

.....................

15 o !
15 [LDT Limit '
LOTR | LDT DESCR Selector| | |LDT Base Linear Address
31 X
15 Program Invisible '
[1DT Limit Automatically Loaded &
IDTR | IDT Base Linear Address From LDT Descriptor :
31
15
| GDT Limit
GDTR L:; DT Base Linear Address 18420A-010

Figure 8. Descriptor Table Registers

Each of the tables has a register associated with it
GDTR, LDTR, and IDTR (see Figure 8). The LGDT,
LLDT, and LIDT instructions load the base and limit of
the Global, Local, and Interrupt Descriptor Tables into
the appropriate register. The SGDT, SLDT, and SIDT
store the base and limit values. These are privileged
instructions.

Giobal Descriptor Table

The Global Descriptor Table (GDT) contains descriptors
which are available to all of the tasks in a system. The
GDT can contain any type of segment descriptor except
for interrupt and trap descriptors. Every Am386SE CPU
system contains a GDT.

The first slot of the Global Descriptor Table corresponds
to the null selector and is not used. The null selector
defines a null pointer value.

Local Descriptor Table

LLDTs contain descriptors which are associated with a
given task. Generally, operating systems are designed
sothateachtask has aseparate LDT. The LDT may con-
tain only code, data, stack, task gate, and call gate des-
criptors. LDTs provide a mechanism for isolating a given
task’s code and data segments fromthe rest of the oper-
ating system, while the GDT contains descriptors for
segments which are common to all tasks. A segment
cannot be accessed by a task if its segment descriptor
does not exist in either the current LDT orthe GDT. This
provides both isolation and protection for a task’'s seg-
ments while still allowing global data to be shared
among tasks.

Unlike the 6-byte GDT or IDT registers which contain a
base address and limit, the visible portion of the LDT
register contains only a 16-bit selector. This selector
refers to a Local Descriptor Table descriptor in the GDT
(see Figure 1).

Interrupt Descriptor Table

The third table needed for Am386SE microprocessor
systems is the Interrupt Descriptor Table. The IDT
contains the descriptors which point to the location of the
up to 256 interrupt service routines. The IDT may
contain only task gates, interrupt gates, and trap gates.
The IDT should be at least 256 bytes in size in order to
hold the descriptors for the 32 interrupts reserved for
future use. Every interrupt used by a system must have
an entry in the IDT. The IDT entries are referenced by
INT instructions, external interrupt vectors, and
exceptions.

Descriptors

The object to which the segment selector points to is
called adescriptor. Descriptors are eight byte quantities
which contain attributes about a given region of physical
address space. These attributes include the 32-bit base
physical address of the segment, the 20-bit length and
granularity of the segment, the protection level, read,
write, or execute privileges, the default size of the oper-
ands (16 bit or 32 bit), and the type of segment. All of the
attribute information about a segment is contained in 12
bits in the segment descriptor. Figure 9 shows the gen-
eral format of a descriptor. All segments on the
Am386SE microprocessor have three attribute fields in
common: the P bit, the DPL bit, and the S bit. The P
(Present) Bit is 1 if the segment is loaded in physical
memory. If P=0, then any attempt to access this seg-
ment causes a Not Present exception (number 11). The
Descriptor Privilege Level (DPL) is a two bit field which
specifies the protection level, 0-3, associated with a
segment.

The Am386SE microprocessor has two main categories
of segments: system segments and non-system seg-
ments {for code and data). The segment bit (S) deter-
mines if a given segment is a system segment or a code
or data segment. If the S bit is 1, then the segment is
either a code or data segment; if itis 0, then the segment
is a system segment.

26 Am386SE Microprocessor

PRELIMINARY

AMD a

Code and Data Descriptors (S=1)

Figure 10 shows the general format of a code and data
descriptor, and Table 9 illustrates how the bits in the
Access Right Byte are interpreted.

Code and data segments have several descriptor figlds
in common. The accessed bit (A) is set whenever the
processor accesses a descriptor. The granularity bit (G)
specifies if a segment length is byte-granular or
page-granuiar.

System Descriptor Formats (S=0)

System segments describe information about operating
system tables, task, and gates. Figure 11 shows the
general format of system segment descriptors, and the
various types of system segments. Am386SE CPU
system descriptors (which are the same as Am386DE
CPU system descriptors) contain a 32-bit base physical
address and a 20-bit segment limit. 80286 system
descriptors have a 24-bit base address and a 16-bit
segment limit. 80286 system descriptors are identified
by the upper 16 bits being all zero.

Differences Between Am386SE Microprocessor
and 80286 Descriptors

In order to provide operating system compatibility with
the 80286, the Am386SE CPU supports all of the 80286
segment descriptors. The 80286 system segment des-
criptors contain a 24-bit base address and 16-bit limit,
while the Am386SE CPU system segment descriptors
have a 32-bit base address, a 20-bit limit field, and a
granularity bit. The word count field specifies the num-
ber of 16-bit quantities to copy for 80286 call gates and
32-bit quantities for Am386SE CPU call gates.

Table 9. Access Rights Byte Definition for Code and Data Descriptors

Bit
Position Name - Function
7 Present (P} P=1 Segmentis mapped into physical memory.
P=0 No mapping to physical memory exists.
Base and Limit are not used.
6-5 Descriptor Privilege Levels (DPL) | Segment privilege attribute used in privitege tests.
4 Segment Descriptor (S) S=1 Code or Data (includes stacks) Segment Descriptor
S=0 System Segment Descriptor or Gate Descriptor
3 Executable (E) E=0 Descriptor type is data segment.)
2 Expansion Direction (ED) ED =0 Expand up segment offsets must be < limit. If Data
ED =1 Expand down segment, offsets must be > limit. } Segment
1 Writeable (W) W =0 Data segment may not be written into. E=0)
W =1 Data segment may be written into.
P,
3
3 Executable (E) =1 Descriptor type is code segment.
2 Conforming (C) C=1 Code segment may only be executed. if Data
when CPL > DPL and CPL remains unchanged. & Segment
S=1,
1 Readable (R) R=0 Code segment may not be read. EE =1)
R=1 Code segment may be read.]
0 Accessed (A} A=0 Segment has not been accessed.
A=1 Segment selector has been loaded into segment register
or used by selector test instructions.

Am386SE Microprocessor

27

z' AMD

PRELIMINARY

Selector Fields

A selector in Protected Mode has three fields: Local or
Global Descriptor Table Indicator (T1), Descriptor Entry
index (Index), and Requestor (the selector’s) Privilege
Level (RPL), as shown in Figure 12. The Tl bit selects
either the Global Descriptor Table or the Local Descrip-
tor Table. The Index selects one of 8K descriptors in the
appropriate descriptor table. The RPL bits allow high
speed testing of the selector’s privilege attributes.

Segment Descriptor Cache

In addition to the selector value, every segment register
has a segment descriptor cache register associated

with it. Whenever a segment register's contents are
changed, the 8-byte descriptor associated with the
selector is automatically loaded (cached) on the chip.
Once loaded, all references to that segment use the
cached descriptor information instead of reaccessing
the descriptor. The contents of the descriptor cache are
not visible to the programmer. Since descriptor caches
only change when a segment register is changed,
programs which modify the descriptor tables must
reload the appropriate segment registers after changing
a descriptor’s value.

0 Byte Address

Segment Limit 15-0 0

DPL |S| Type |A
1 1

Base

23-18 *4

31
Segment Base 15-0
Limit

Base 31-24 G|D|O]| AVL 1916 P
Base Base Address of the segment A
Limit The length of the segment G
P Present Bit (1 = Prasent; 0 = Not Present)
DPL Descriptor Privilege Level 0-3 D
S Segment Descriptor (0 = System Descriptor;

1 = Code or Data Segment Descriptor) 0
Type Type of Segment AVL

Accessed Bit

Granularity Bit (1 = Segment length in page-granular;

0 = Segment length is byte-granular)

Default Operation Size (recognized in code segment
descriptors only; 1 = 32-bit segment, 0 = 16-bit segment)
Bit must be zero for compatibility with future processors
Available field for user or OS 18420A—011

Figure 9. Segment Descriptors

31 0 Byte Address
Segment Base 150 Segment Limit 150 0
Limit . Base
Base 31-24 G|DJ|o} AL 1916 Access Rights Bytes 2316 +4

D/B 1 = Default Instruction Attributes are 32 bits G
0 = Default Instruction Attributes are 16 bits

AVL Available field for user or OS 0

Granularity Bit 1 = Segment length is page-granular

0 = Segment length in byte-granular

Bit must be zero for compatibility with future processors

18420A-012

Figure 10. Code and Data Descriptors

31 0 Byte Address
Segment Base 15-0 Segment Limit 15-0 0
B 31-24 Limit Base
ase G|D|o]o 19-16 P DIIDL 0 ' Ty|pe \ 23-16 +4

Type Definition

Type Definition

0 Invalid 8 Invalid

1 Available 80286 TSS 9 Available TSS

2 DT A Undefined (Reserved)

3 Busy 80286 1SS B Busy TSS

4 80286 Call Gate C Am386SE CPU Call Gate

5 Task Gate (for 80286 or Am386SE CPU Task) D Undefined (Reserved)

6 80286 Interrupt Gate E Am386SE CPU Interrupt Gate

7 80286 Trap Gate F Am386SE CPU Trap Gate

Figure 11. System Descriptors 18420A-013

28 Am386SE Microprocessor

PRELIMINARY

AMD b"

Protection

The AmM386SE microprocessor has four levels of
protection which are optimized to support a multitasking
operating system and to isolate and protect user
programs from each other and the operating system.
The privilege levels control the use of privileged
instructions, I/Q instructions, and access to segments
and segment descriptors.

The four-level hierarchical privilege systemis an exten-
sion of the user/supervisor privilege mode commonly
used by minicomputers. The Privilege Levels (PL) are
numbered 0 through 3. Level 0 is the most privileged
level.

Rules of Privilege

The Am386SE microprocessor controls access to both
data and procedures between levels of a task, accord-
ing to the following rules:

— Data stored in a segment with privilege level p can be
accessed only by code executing at a privilege level at
least as privileged as p.

— A code segment/procedure with privilege level p can
only be called by a task executing at the same or
lesser privilege level than p.

Privilege Levels

At any point in time, a task on the Am386SE micropro-
cessor always executes at one of the four privilege lev-
els. The Current Privilege Level (CPL) specifies what

the task’s privilege level is. A task’s CPL may only be
changed by control transfers through gate descriptors to
a code segment with a different privilege level. Thus, an
application program running at PL=3 may call an operat-
ing system routine at PL=1 {via a gate) which would
cause the task’s CPL to be set to 1 until the operating
system routine was finished.

Selector Privilege (RPL)

The privilege level of a selector is specified by the RPL
field. The selector's RPL is only used to establish a less
trusted privilege level than the current privilege level of
the task for the use of a segment. This level is called the
task’s Effective Privilege Level (EPL). The EPL is
defined as being the least privileged (numerically larger)
level of a task’s CPL and a selector's RPL. The RPL is
most commonly used to verify that pointers passedto an
operating system procedure do not access data that is
of higher privilege than the procedure that originated the
pointer. Since the originator of a selector can specify any
IRPL value, the Adjust RPL (ARPL) instruction is pro-
vided to force the RPL bits to the originator's CPL.

1/O Privilege

The /O Privilege Level (IOPL) lets the operating system
code executing at CPL=0 define the least privileged
level atwhich /O instructions canbe used. An Exception
13 (General Protection Violation) is generated if an l/O
instruction is attempted when the CPL of the task is less
privileged then the IOPL. The IOPL is stored in bits 13
and 14 of the EFLAGS register. The following instruc-
tions cause an Exception 13 if the CPL is greater than
IOPL: IN, INS, OUT, OUTS, STI, CLI, and LOCK prefix.

Selictor
’15 4 3 2 1
Segment TI|RPL
Register | 0f 0--------- ojojt]i]1] |
* ~ g Table
Index Indicator
T=1 T=0
N \ 4 N v
I /L Descriptor / I
/ Number /‘
[} 6
5 5
4 4
3 | Descriptor 3
2 2
1 1
0 0 Null

Local Descriptor Table

Global Descriptor Table
18420A-014

Figure 12. Example Descriptor Selection

Am386SE Microprocessor 29

DAMD PRELIMINARY

Descriptor Access

There are basically two types of segment accesses:
those involving code segments such as control trans-
fers, and those involving data accesses. Determining
the ability of a task to access a segment involves the
type of segment to be accessed, the instruction used,
the type of descriptor used, and CPL, RPL, and DPL as
described above.

Any time an instruction loads a data segment register
(DS, ES, FS, GS) the Am386SE CPU makes protection
validation checks. Selectors loaded in the DS, ES, FS,
GS registers must refer only to data segment or read-
able code segments.

Finally, the privilege validation checks are performed.
The CPL is compared to the EPL and if the EPL is more
privileged than the CPL, an Exception 13 (General
Protection Fault) is generated.

30 Am386SE Microprocessor

PRELIMINARY

AMD n

313029282726 25 242322212019 1817 161514131211 1098 7 6 5 4 3 0
31jt+1 11011 0(0000CT+T t 1 1]01 001 100j]O0C0O0O0CO0O0T1
630 0 1t 000 t 11t 001010111t 11 1001111311001
g5t t 1111 1 1|t 1t 1111 1t 1)1 11 11111111111 1
127(0 0 0 000 0 0{0 0O O OCOO0OOO|00O0O0OD0OOQO|O0O0DO000O

111t 11111
(0.9} (29
n \J

1/O Ports Accessible: 2 — 9, 12, 13, 15, 20 — 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58 — 60, 62, 63, 96 — 127

18420A-016

Figure 13. Sample VO Permission Bit Map

The rules regarding the stack segment are slightly differ-
ent than those involving data segments. Instructions
that load selectors into SS must refer to data segment
descriptors for writeable data segments. The DPL and
RPL mustequal the CPL of all other descriptor types ora
privilege level violation will cause an Exception 13. A
stack not present fault causes an Exception 12.

Privilege Level Transfers

Inter-segment control transfers occur when a selector is
loaded in the CS register. For a typical system most of
these transfers are simply the result of a callorajumpto
another routine. There are five types of control transfers
which are summarized in Table 10. Many of these trans-
fers result in a privilege level transfer. Changing privi-
lege levels is done only by control transfers, using gates,
task switches, and interrupt or trap gates.

Control transfers can only occur if the operation which
loaded the selector references the correct descriptor
type. Any violation of these descriptor usage rules will
cause an Exception 13.

CALL Gates

Gates provide protected indirect CALLs. One of the
major uses of gates is to provide a secure method of
priviltege transfers within a task. Since the operating
system defines all of the gates in a system, it can ensure
that all gates only allow entry into a few trusted
procedures.

Table 10. Descriptor Types Used for Control Transfer

Control Transfer Types Operation Types Descriptor Descriptor
Referenced Table
Intersegment within the same privilege level JMP, CALL, RET, IRET* Code Segment GDT/LDT
Intersegment to the same or higher privilege level CALL Call Gate GDTADT
Interrupt within task may change CPL Interrupt Instruction, Trap or Interrupt DT
Exception, External Gate
Interrupt
Intersegment to a lower privilege level RET, IRET* Code Segment GDTADT
(changes task CPL)
CALL, JMP Task State GDT
Segment
CALL, JMP Task Gate GDT/LDT
- Task Switch IRET** Task Gate IDT
Interrupt Instruction,
Exception, External
Interrupt
Notes:

*NT (Nested Task bit of flag register) = 0
*“*NT (Nested Task bit of flag register) = 1

Am386SE Microprocessor

31

l"l AMD

PRELIMINARY

Task Switching

A very important attribute of any multitasking/muiti-user
operating system is its ability to rapidly switch between
tasks or processes. The Am386SE microprocessor
directly supports this operation by providing a task
switch instruction in hardware. The task switch opera-
tion saves the entire state of the machine (all of the reg-
isters, address space, and a link to the previous task),
loads a new execution state, performs protection
checks, and commences execution in the new task. Like
transfer of control by gates, the task switch operation is
invoked by executing an intersegment JMP or CALL
instruction which refers to a Task State Segment (TSS),
or a task gate descriptor in the GDT or LDT. An INT n
instruction, exception, trap, or external interrupt may
also invoke the task switch operation if there is a task
gate descriptor in the associated IDT descriptor siot.

The TSS descriptor points to a segment (see Figure 14)
containing the entire execution state. A task gate des-
criptor contains a TSS selector. The Am386SE micro-
processor supports both 80286 and Am386SE CPU
TSSs. The limit of an Am3B86SE CPU TSS must be
greater than 64H (2BH for a 80286 TSS), and can be as
large as 16 Mbytes. In the additional TSS space, the
operating system is free to store additional information
such as the reason the task is inactive, the time the task
has spent running, or open files belonging to the task.

Each task must have a TSS associated with it. The cur-
rent TSS is identified by a special register in the
Am386SE microprocessor called the Task State Seg-
ment Register (TR). This register contains a selector
referring to the task state segment descriptor that
defines the current TSS. A hidden base and limitregister
associated with TSS descriptor are loaded whenever
TR s loaded with a new selector. Returning from a task
is accomplished by the IRET instruction. When IRET is
executed, control is returned to the task which was inter-
rupted. The currently executing task’s state is saved in
the TSS and the old task state is restored from its TSS.

Several bits in the flag register and machine status word
(CRO) give information about the state of a task which is
useful to the operating system. The Nested Task bit (NT)
controis the function of the IRET instruction. If NT = 0,
the IRET instruction performs the regular return. If NT =
1, IRET performs a task switch operation base to the
previous task. The NT bit is set or reset in the following
fashion:

When a CALL or INT instruction initiates a task
switch, the new TSS will be marked busy and the
back link field of the new TSS set to the old TSS
selector. The NT bit of the new task is setby CALL

or INT initiated task switches. An interrupt that
does not cause a task switch will clear NT (the NT
bit will be restored after execution of the interrupt
handler). NT may also be set or cleared by POPF
or IRET instructions.

The Am3B6SE microprocessor task state segment is
marked busy by changing the descriptor type field from
Type 9 to Type OBH. An 80286 TSS is marked busy by
changing the descriptor type field from Type 1 to Type 3.
Use of a selector that references a busy task state seg-
ment causes an Exception 13.

The coprocessor's state is not automatically saved
when a task switch occurs. The Task Switched Bit (TS)
in the CRO register helps deal with the coprocessor’s
state in a multitasking environment. Whenever the
Am386SE microprocessor switches tasks, it sets the TS
bit. The Am386SE CPU detects the first use of a proces-
sor extension instruction after a task switch and causes
the processor extension Not Available Exception 7. The
exception handler for Exception 7 may then decide
whether to save the state of the coprocessor.

The T bit in the Am386SE microprocessor TSS indi-
cates that the processor shouid generate a debug
exception when switching to a task. If T=1, then upon
entry to a new task a debug Exception 1 will be
generated.

Initialization and Transition To Protected Mode

Since the Am386SE microprocessor begins executing
in Real Mode immediately after RESET, it is necessary
to initialize the system tables and registers with the
appropriate values. The GDT and IDT registers must
refer to a valid GDT and IDT. The IDT should be at least
256 bytes long, and the GDT must contain descriptors
for the initial code and data segments.

Protected Mode is enabled by loading CRO with PE bit
set. This can be accomplished by using the MOV CRO,
R/Minstruction. After enabling Protected Mode, the next
instruction should execute an intersegment JMP to load
the CS register and flush the instruction decode queue.
The final step is to load all of the data segment registers
with the initial selector values.

An alternate approach to entering Protected Mode is to
use the buift-in task-switch to load aff of the registers. In
this case the GDT would contain two TSS descriptors in
addition to the code and data descriptors needed for the
first task. The first JMP instruction in Protected Mode
would jumptothe TSS causing a task switch and loading
all of the registers with the values stored in the TSS. The
Task State Segment Register should be initialized to
point to a valid TSS descriptor.

32 Am386SE Microprocessor

— T -

-

PRELIMINARY AMDa

31 16 15 0 TB%:'G
0000000000000000 | Back Link | o
ESPO 4)
0000000000000000 | S50 8
ESP c | Stk
0000000000000000 | 851 10 [CrL
ESP2 14 2
0000000000000000 { 582 18 |
CR3 1€)
EIP 20
EFLAGS 24
EAX 28
ECX 2c
EDX 30
EBX 34
ESP 38 | C#;’si"‘
EBP 3C | state
ES| 40
EDI
0000000000000000 ES 48
0000000000000000 cs 4
0000000000000000 SS 50
0000000000000000 DS 54
0000000000000000 FS 58
0000000000000000 GS 5C
0000000000000000 LDT 60 J
BIT_MAP_OFFSET(15:0) 0000000000000000 BN Debug
A, Available N— 68~ Trap
1 System Status, etc. =~ Bit
in TSS
31 24 | 23 16] 15 8|7 ofw,
63 56 | s5 48] a7 40] 30 3p| BIT_MAP_OFFSET
95 a8 |87 80 | 79 72| 71 54
96| OFFSET + C
EEIITIET . OFFSET + 10
1JAccess] TSS |
+| Rights | Limit ﬁ- ~ A
E BASE LE__ 55407 1/O Permission Bitmap OFFSET + 1FEC
' 31program 0} 65439 (One Bit per Byte /O OFFSET + 1FF0
L nvisible 65471 Port. Bitmap may be OFFSET + 1FF4
Task Register 55509 truncated using TSS Limit.) 65472 OFFSET + 1FF8
TA[Selector | 65535] 65504 | OFFSET + 1FFC
15 0 FEH" OFFSET + 2000
#$ 155 Limit = OFFSET + 2000H
1 TSS Descriptor (in GDT) a
N Segment Base 150 Segment Limit 15-0
—»
Base 3124 s[tlofe] whs [P DIPL o lTyTe i)

Type = 9: Available TSS
Type = 8: Busy TSS 18420A-015
Figure 14. TSS and TSS Registers

Am386SE Microprocessor 33

a AMD

PRELIMINARY

FUNCTIONAL DATA

The Am386SE microprocessor features a straight-
forward functional interface to the external hardware
(see Figure 15). The Am3B6SE CPU has separate
parallel buses for data and address. The data bus is
16-bits in width, and bidirectional. The address bus
outputs 24-bit address values using 23 address lines
and two Byte Enable signals.

The Am386SE microprocessor has two selectable
address bus cycles: address pipelined and non-address
pipelined. The address pipelining option allows as much
time as possible for data access by starting the pending
bus cycle before the present bus cycle is finished. A non-
pipelined bus cycle gives the highest bus performance
by executing every bus cycle in two processor CLK
cycles. For maximum design flexibility, the address
pipelining option is selectable on a cycle-by-cycle basis.

The processor’s bus cycle is the basic mechanism for
information transfer, either from system to processor, or
from processor to system. The Am386SE microproces-
sor bus cycles perform data transfer in a minimum of
only two clock periods. The maximum transfer band-
width at 16 MHz is therefore 16 Mbyte/s. However, any
bus cycle will be extended for more than two clock peri-
ods if external hardware withholds acknowledgment of
the cycle.

The Am386SE microprocessor can relinquish control of
its local buses to allow mastership by other devices,
such as Direct Memory Access (DMA) channels. When

relinquished, HLDA is the only output pin driven by the
Am386SE microprocessor, providing near complete
isolation of the processor from its system (all other out-
put pins are in a float condition).

Signal Description Overview

Below is a brief description of the Am386SE micropro-
cessor input and output signals arranged by functional
groups.

Example signal: M/IO—High voltage indicates memory
selected
-Low voltage indicates I/O
selected

The signal descriptions sometimes refer to Switching
timing parameters, such as t25 Reset Setup Time and
126 Reset Hold Time. The values of these parameters
can be found in the Switching Characteristics table.

Clock (CLK2)

CLK2 provides the fundamental timing for the Am386SE
microprocessor. It is divided by two internally to gener-
ate the internal processor clock used for instruction
execution. The internal clock is comprised of two
phases, phase one and phase two. Each CLK2 periodis
a phase of the internal clock. Figure 16 illustrates the
relationship. If desired, the phase of the interna! proces-
sor clock can be synchronized to a known phase by
ensuring the falling edge of the RESET signal meets the
applicable setup and hold times, 125 and t26.

2X Clock{ L’ Address Bus) A23-A1
BHE 24-Bit Address
i ——
16-Bit Data { D15-DO 5 } Evtebl
—; nables
ADS
Bus Control NA
us Control { ——— —D-
[Am386SE T
READY Microprocessor —’ Bus Cycle Definition
LOCK
—>
HOLD N PEREQ
Bus Arbitration ‘M— & Math Coprocessor Signaling
ERROR
‘—
INTR >
NM1 } Power Connections
Interrupts { —————] 4—__
RESET R
1—} Float

18420A-017

Figure 15. Functional Signal Groups

34 Am386SE Microprocessor

PRELIMINARY

AMD n

Period

61 92

Processor Clock

CLK2 Period| CLK2 Period| CLK2 Period| CLK2 Period

Processor Clock
Period

¢1 92

e[2vd N2V N\avA N\avy \avrd \

Internal \\

Processor Clock N /]

"\

40-ns Min (25-MHz Max)

>

18420A-018

Figure 16. CLK2 Signal and Internal Processor Clock

Data Bus (D15-D0)

These three-state, bidirectional signals provide the gen-
eral purpose data path between the Am386SE micro-
processor and other devices. The data bus outputs are
active High and will float during Bus Hold Acknowledge.
Data bus reads require that read-data setup and hold
times (21 and t22) be met relative to CLK2 for correct
operation.

Address Bus (A23-A1, BHE, BLE)

These three-state outputs provide physical memory
addresses or /O port addresses. A23-A16 are Low dur-
ing I/0 transfers, except for I/O transfers automatically
generated by coprocessor instructions. During copro-
cessor |/O transfers, A22—-A16 are driven Low and A23
is driven High, so that this address line can be used by
external logic to generate the coprocessor select signal.
Thus, the /O address driven by the Am386SE micropro-
cessor for coprocessor commands is 8000F8H, the I/0
addresses driven by the Am386SE CPU for coproces-
sor data are 8000FCH or 8000FEH or cycles to a 387SX
math coprocessor.

The address bus is capable of addressing 16 Mbytes of
physical memory space (000000H through FFFFFFH),
and 64 Kbytes of I/O address space (000000H through
O00FFFFH) for programmed I/O. The address bus is
active High and will float during Bus Hold Acknowledge.

The Byte Enable outputs, BHE and BLE, directly indi-
cate which bytes of the 16-bit data bus are involved with
the current transfer. BHE applies to D15-D8 and BLE
applies to D7-DO. If both BHE and BLE are asserted,
then 16 bits of data are being transferred. See Table 11
for a complete decoding of these signals. The Byte
Enables are active Low and will float during Bus Hold
Acknowledge.

Table 11. Byte Enable Definitions

BHE BLE Function
0 [4]
0 1

Word Transfer

Byte transfer on upper byte
of the data bus, D15-D8

Byte transfer on lower byte
of the data bus, D7-D0

Never occurs

1 Q

1 1

Bus Cycle Definition Signals (W/R, D/C, Mi0, LOCK)

These three-state outputs define the type of bus cycle
being performed: W/R distinguishes between write and
read cycles; D/C distinguishes between data and con-
trol cycles; M/I0 distinguishes between memory and I/O
cycles; and, LOCK distinguishes between locked and
unlocked bus cycles. All of these signals are active Low
and will float during Bus Acknowledge.

The primary bus cycle definition signals are W/R, D/C,
and M/IQ, since these are the signals driven valid as
ADS (Address Status output) becomes active. The
LOCK is driven valid at the same time the bus cycle
begins, which, due to address pipelining, could be after
ADS becomes active. Exact bus cycle definitions, as a
function of W/R, D/C, and M/IO, are given in Table 12.

LOCK indicates that other system bus masters are not
to gain controi of the system bus while itis active. LOCK
is activated on the CLK2 edge that begins the first
locked bus cycle (i.e., itis notactive atthe same time as
the other bus cycle definition pins) and is deactivated
when READY is returned at the end of the last bus cycle
which is to be locked. The beginning of a bus cycle is
determined when READY is returned in a previous bus
cycle and another is pending (ADS is active), or the
clock in which ADS is driven active if the bus was idle.
This means that it follows more closely with the write
data rules when it is valid, but may cause the bus to be

Am386SE Microprocessor 35

PRELIMINARY

Table 12. Bus Cycle Definition

Mo D/C W/R Bus Cycle Type Locked?
0 0 0 Interrupt Acknowledge Yes
0 0 1 Does not occur —
0 1 0 1/O Data Read No
0 1 1 I/O Data Write No
1 0 0 Memory Code Read No
1 0 1 Halt: Shutdown: No
Address = 2 Address =0
BHE = 1 BHE =1
BLE=0 BLE=0
1 1 o] Memory Data Read Some Cycles
1 1 1 Memory Data Write Some Cycles

locked longer than desired. The LOCK signal may be
explicitly activated by the LOCK prefix on certain
instructions.

LOCK is always asserted when executing the XCHG
instruction, during descriptor updates, and during the
interrupt acknowledge sequence.

Bus Control Signals (ADS, READY, NA)

The following signals allow the processor to indicate
when a bus cycle has begun, and allow other system
hardware to control address pipelining and bus cycle
termination.

Address Status (ADS)

This three-state output indicates that a valid bus cycle
definition and address (W/R, D/C, M/I0, BHE, BLE, and
(A23—~A1) are being driven at the Am386SE micropro-
cessor pins. ADS is an active Low output. Once ADS is
driven active, valid address, Byte Enables, and defini-
tion signais will not change. In addition, ADS will remain
active until its associated bus cycle begins (when
READY is returned for the previous bus cycle when run-
ning pipelined bus cycles). When address pipelining is
utilized, maximum throughput is achieved by initiating
bus cycles when ADS and READY are active in the
same clock cycle. ADS will float during Bus Hold
Acknowledge. See sections Non-Pipelined Address
and Pipelined Address for additional information on how
ADS is asserted for different bus states.

Transfer Acknowledge (READY)

This input indicates the current bus cycle is complete,
and the active bytes indicated by BHE and BLE are
accepted or provided. When READY is sampled active
during a read cycle or interrupt acknowledge cycle, the
Am386SE microprocessor latches the input data and
terminates the cycle. When READY is sampled active
during a write cycle, the processor terminates the bus
cycle.

READY is ignored on the first bus state of all bus cycles,
and sampled each bus state thereafter until asserted.
READY must eventually be asserted to acknowledge
every bus cycle, including Halt Indication and Shutdown

Indication bus cycles. When being sampled, READY
must always meet setup and hold times (t19 and t20) for
correct operation.

Next Address Request (NA)

This is used to request address pipelining. This input
indicates the system is prepared to acceptnew values of
BHE, BLE, A23-A1, W/R, D/C, and M/IO from the
Am386SE CPU even if the end of the current cycle is not
being acknowledged on READY. If this input is active
when sampled, the next address is driven onto the bus,
provided the next bus request is already pending inter-
nally. NA is ignored in CLK cycles in which ADS or
READY is activated. This signal is active Low and must
satisfy setup and hold times (115 and t16) for correct
operation. See the sections Read and Write Cycles on
page 43, and Pipelined Address on page 46 for addi-
tional information.

Bus Arbitration Signals (HOLD, HLDA)

This section describes the mechanism by which the pro-
cessor relinquishes control of its local buses when
requested by another bus master device. See the sec-
tion Entering and Exiting Hold Acknowledge on page 51
for additional information.

Bus Hold Request (HOLD)

This input indicates some device other than the
Am386SE microprocessor requires bus master-ship.
When control is granted, the Am386SE CPU floats
A23-A1, BHE, BLE, D15-D0, LOCK, M/10, D/C, WR,
and ADS, and then activates HLDA, thus entering the
Bus Hoid Acknowiedge state. The local bus will remain
granted to the requesting master until HOLD becomes
inactive. When HOLD becomes inactive, the Am386SE
microprocessor will deactivate HLDA and drive the local
bus (at the same time), thus terminating the Hold
Acknowledge condition.

HOLD mustremain asserted as long as any other device
is a local bus master. External pull-up resistors may be
required when in the Hold Acknowledge (HL.DA) state,
since none of the Am386SE microprocessor floated out-
puts have internal puil-up resistors. See the section

36 Am386SE Microprocessor

e e

I

11

PRELIMINARY

AMD l.‘l

Resistor Recommendations, on page 59 for additional
information. HOLD is not recognized while RESET is
active. If RESET is asserted while HOLD is asserted,
RESET has priority and places the bus into an idle state,
rather than the Hold Acknowledge (high impedance)
state.

HOLD is a level-sensitive, active High, synchronous
input. HOLD signals must always meet setup and hold
times (123 and t24) for correct operation.

Bus Hold Acknowledge (HLDA)

When active (High), this output indicates the Am386SE
microprocessor has relinquished control of its local bus
in response to an asserted HOLD signal, and is in the
Bus Hold Acknowledge state.

The Bus Hold Acknowledge state offers near complete
signal isolation. In the HLDA state is the only signal
being driven by the Am386SE microprocessor. The
other output or bidirectional signals (D15-DO, BHE,
BLE, A23-A1, W/R, D/C, M/IG, LOCK, and ADS) are in
a high-impedance state so the requesting bus master
may control them. These pins remain Off throughout the
time that HLDA remains active (see Table 13). Pull-up
resistors may be desired on several signals to avoid
spurious activity when no bus master is driving them.
Seethe section Resistor Recommendations on page 59
for additional information.

When the HOLD signal is made inactive, the Am386SE
microprocessor will deactivate HLDA and drive the bus.
One rising edge on the NM| input is remembered for pro-
cessing after the HOLD input is negated.

Table 13. Output Pin State During HOLD

Pin Value Pin Names
1 HLDA
Float LOCK, M/IQ, D/C, W/R, ADS,
A23-A1, BHE, BLE, D15-D0

In addition to the normal usage of Hold Acknowledge
with DMA controllers or master peripherals, the near
complete isolation has particular attractiveness during
systemtest when test equipment drives the system, and
in hardware fault-tolerant applications.

HOLD Latencies

The maximum possible HOLD latency depends on the
software being executed. The actual HOLD latency at
any time depends on the current bus activity, the state of
the LOCK signal (internal to the CPU) activated by the
LOCK prefix, and interrupts. The Am386SE micropro-
cessor will not honor a HOLD request until the current
bus operation is complete.

The Am386SE microprocessor breaks 32-bit data or /0
accesses into 2 internally locked 16-bit bus cycles; the
LOCK signal is not asserted. The Am386SE micropro-
cessor breaks unaligned 16-bit or 32-bit data or I/O

accesses into 2 or 3 internally locked 16-bit bus cycles.
Again, the LOCK signal is not asserted but a HOLD
request will not be recognized until the end of the entire
transfer.

Wait states affect HOLD latency. The Am386SE micro-
processor will not honor a HOLD request until the end of
the current bus operation, no matter how many wait
states are required. Systems with DMA where data
transfer is critical must ensure that READY returns
promptly.

Coprocessor Interface Signals (PEREQ, BUSY,
ﬁ%)

In the following sections are descriptions of signals dedi-
cated to the math coprocessor interface. In addition to
the data bus, address bus, and bus cycle definition sig-
nals, the following signals control communication
between the Am386SE microprocessor and its 3875X
math coprocessor extension.

Coprocessor Request (PEREQ)

When asserted (High), this input signal indicates a
coprocessor request for a data operand to be trans-
ferred to/from memory by the Am386SE microproces-
sor. In response, the Am386SE microprocessor
transfers information between the math coprocessor
and memory. Because the Am386SE CPU has inter-
nally stored the math coprocessor op-code being
executed, it performs the requested data transfer with
the correct direction and memory address.

PEREQ is level-sensitive active High asynchronous sig-
nal. Setup and hold times (t29 and t30) relative to the
CLK2 signal must be met to guarantee recognition at a
particular clock edge. This signal is provided with a weak
internal pull-down resistor of around 20 Kohms to
Ground so that it will not float active when left
unconnected.

Coprocessor Busy (BUSY)

When asserted Low, this input indicates that the copro-
cessoris still executing an instruction, and is notyet able
to accept another. When the Am386SE microprocessor
encounters any coprocessor instruction which operates
on the numerics stack (e.g., load, pop, or arithmetic
operation), or the WAIT instruction, this input is first
automatically sampled until itis seen to be inactive. This
sampling of the BUSY input prevents overrunning the
execution of a previous coprocessor instruction.

The FNINIT, FNSTENV, FNSAVE, FNSTSW, FNSTCW,
and FNCLEX coprocessor instructions are allowed to
execute even if BUSY is active, since these instructions
are used for coprocessor initialization and exception-
clearing.

BUSY is an active Low, level-sensitive, asynchronous
signal. Setup and hold times (t29 and t30), relative to the
CLK2 signal, must be met to guarantee recognition ata
particular clock edge. This pin is provided with a weak
internal pull-up resistor of around 20 Kohms to Vec s0
that it will not float active when left unconnected.

Am386SE Microprocessor 37

- Yy

n AMD

PRELIMINARY

BUSY serves an additional function. If BUSY is sampled
Low at the falling edge of RESET, the Am386SE micro-
processor performs an internal self-test (see the section
Bus Activity During and Foliowing Reset on page 53). If
BUSY is sampled High, no self-test is performed.

Coprocessor Error (ERROR)

When asserted Low, this input signal indicates that the
previous coprocessor instruction generated a coproces-
sor error of a type not masked by the coprocessor’s con-
trol register. This input is automatically sampled by the
Am386SE microprocessor when a coprocessor instruc-
tion is encountered, and if active, the Am386SE CPU
generates Exception 16 to access the error-handling
software.

Several coprocessor instructions, generally those which
clear the numeric error flags in the coprocessor or save
coprocessor state, do execute without the Am386SE
CPU generating Exception 16 even if ERROR is active.
These instructions are FNINIT, FNCLEX, FNSTSW,
FNSTSWAX, FNSTCW, FNSTENV, and FNSAVE.

ERROR is an active Low, level-sensitive, asynchronous
signal. Setup and hold times (129 and t30), relative to the
CLK2 signal, must be met to guarantee recognition at a
particular clock edge. This pin is provided with a weak
internal pull-up resistor of around 20 Kohms to Ve so
that it will not float active when left unconnected.

Interrupt Signals (INTR, NMI, RESET)

The following descriptions cover inputs that can inter-
rupt or suspend execution of the processor’s current
instruction stream.

Maskable Interrupt Request (INTR)

When asserted, this input indicates a request for inter-
rupt service, which can be masked by the Am386SE
microprocessor Flag Register IF bit. When the
Am3B6SE CPU responds to the INTR input, it performs
two interrupt acknowledge bus cycles and, at the end of
the second, latches an 8-bit interruptvector on D7-D0 to
identify the source of the interrupt.

INTR is an active High, level-sensitive, asynchronous
signal. Setup and hold times (127 and 28), relative to the
CLK2 signal, must be met to guarantee recognition at a
particular clock edge. To assure recognition of an INTR
request, INTR should remain active until the first inter-
rupt acknowledge bus cycle begins. INTR is sampled at
the beginning of every instruction in the Am386SE
microprocessor’s Execution Unit. In order to be recog-
nized at a particular instruction boundary, INTR must be
active at least eight CLK2 clock periods before the
beginning of the instruction. If recognized, the
Am386SE CPU will begin execution of the interrupt.

Non-Maskable Interrupt Request (NM{)

This input indicates a request for interrupt service which
cannot be masked by software. The non-maskable
interrupt request is always processed according to the
pointer or gate in slot 2 of the interrupt table. Because of

the fixed NMi slot assignment, no interrupt acknowledge
cycles are performed when processing NMI.

NMI is an active High, rising edge-sensitive, asynchro-
nous signal. Setup and hold times (127 and t28), relative
to the CLK2 signal, must be met to guarantee recogni-
tion at a particular clock edge. To assure recognition of
NMI, it must be inactive for at least eight CLK2 periods,
and then be active for at least eight CLK2 periods before
the beginning of the instruction boundary in the
Am386SE microprocessor's Execution Unit.

Once NMI processing has begun, no additional NM!’s
are processed until after the next IRET instruction,
which is typically the end of the NMI service routine. If
NMI is reasserted prior to that time, however, one rising
edge on NMI will be remembered for processing after
executing the next IRET instruction.

Interrupt Latency

The time that elapses before an interrupt request is
serviced (interrupt latency) varies according to several
factors. This delay must be taken into account by the
interrupt source. Any of the following factors can affect
interrupt latency:

1. Ifinterrupts are masked, an INTR request will not be
recognized until interrupts are re-enabled.

2. If an NMI is currently being serviced, an incoming
NMI request will not be recognized until the
Am386SE microprocessor encounters the IRET
instruction.

3. Aninterruptrequestis recognized only on an instruc-
tion boundary of the Am386SE microprocessor’s
Execution Unit except for the following cases:

—Repeat string instructions can be interrupted after
each iteration.

—lfthe instruction loads the Stack Segment register,
an interrupt is not processed until after the follow-
ing instruction, which should be an ESP. This
allows the entire stack pointer to be loaded without
interruption.

—If an instruction sets the interrupt flag (enabling
interrupts), an interruptis not processed until after
the next instruction.

The longest latency occurs when the interrupt
request arrives while the Am386SE microprocessor
is executing a long instruction such as multiplication,
division, or a task switch in the Protected Mode.

4. Saving the Flags register and CS:EIP registers.

5. If interrupt service routine requires a task switch,
time must be allowed for the task switch.

6. If the interrupt service routine saves registers that
are not automatically saved by the Am386SE
MICroprocessor.

Reset

This input signal suspends any operation in progress
and places the Am386SE microprocessor in a known

38 Am386SE Microprocessor

PRELIMINARY

AMD a

reset state. The Am386SE CPU is reset by asserting
RESET for 15 or more CLK2 periods (80 or more CLK2
periods before requesting self-test). When RESET is
active, all other input pins, except FLT, are ignored, and
all other bus pins are driven to an Idle Bus state, as
shown in Table 14. If RESET and HOLD are both active
at a point in time, RESET takes priority even if the
Am386SE microprocessor was in a Hold Acknowledge
state prior to RESET active.

Reset is an active High, level-sensitive, synchronous
signal. Setup and hold times (25 and t26) must be metin
order to assure proper operation of the Am386SE
miCroprocessor.

Bus Transfer Mechanism

All data transfers occur as a result of one or more bus
cycles. Logical data operands of byte and word lengths
may be transferred without restrictions on physical
address alignment. Any byte boundary may be used,
although two physical bus cycles are performed as
required for unaligned operand transfers.

The Am386SE microprocessor address signals are
designed to simplify external system hardware. Higher-
order address bits are provided by A23—-A1. BHE and
BLE provide linear selects for the two bytes of the 16-bit
data bus.

Byte Enable outputs BHE and BLE are asserted when
their associated data bus bytes are involved with the
present bus cycle, as listed in Table 15.

Each bus cycle is composed of at least two bus states.
Each bus state requires one processor clock period.
Additional bus states added to a single bus cycle are
called wait states. See the section Bus Functional
Description on page 39.

Table 14. Pin State (Bus Idle) During Reset

Pin Name Signal Level During Reset

ADS 1
D15-DO Float

BHE, BLE 0
A23-A1 1
W/R 0
DC 1
MAC 0
LOCK 1
HLDA 0

Table 15. Byte Enables and Associated

Data and Operand Bytes
Byte Enable |Associated Data Bus
Signal
BLE D7-DO0 (Byte 0—least significant
BHE D15-D8 (Byte 1—most significant)

Memory and I/O Spaces

Bus cycles may access physical memory space or /O
space. Peripheral devices in the system may either be
memory-mapped, 1/O-mapped, or both. As shown in
Figure 17, physical memory addresses range from
000000H to OFFFFFFH (16 Mb) and I/O addresses from
000000H to OOFFFFH (64 Kb). Note the I/O addresses
used by the automatic I/O cycles for coprocessor com-
munication are 8000F8H to 8000FFH, beyond the
address range of programmed l/O, to allow easy gen-
eration of a coprocessor chip select signal using the A23
and M/TO signals.

Bus Functional Description

The Am386SE microprocessor has separate, paraliel
buses for data and address. The data bus is 16-bits in
width and is bidirectional. The address bus provides a
24-bit value using 23 signals for the 23 upper-order
address bits and 23 Byte Enable signals to directly indi-
cate the active bytes. These buses are interpreted and
controlied by several definition signals.

Am386SE Microprocessor 39

a AMD

PRELIMINARY

FFFFFFH

000000H

Note:

Physical Memory
16 Mbyte

Physical Memory Space

8000FFH
8000F8H
(Note)

QOFFFFH
DO0000H

/

\\\

NN

<+—7— Coprocessor
%essbl//
// / Accessible
64 Kbyte Programmed
/O Space
1/0 Space

18420A-019

Since A23 is High during automatic communication with coprocessor, A23 High and MAO Low can be used to easily generate

a coprocessor select signal.

Figure 17. Physical Memory and /O Spaces

40

Am386SE Microprocessor

I!

ﬂ\

PRELIMINARY

AMD l‘:l

The definition of each bus cycle is given by three signals:
M/I0, W/R, and D/C. At the same time, a valid address is
present on the Byte Enable signals, BHE and BLE, and
the other address signals, A23-A1. A status signal,
ADS, indicates when the Am386SE microprocessor
issues a new bus cycle definition and address.

Collectively, the address bus, data bus, and all
associated control signals are referred to simply as the
bus. When active, the bus performs one of the bus
cycles below:

. Read from memory space

. Locked read from memory space

. Write to memory space

Locked write to memory space

. Read from I/O space (or math coprocessor)

. Write to I/0 space (or math coprocessor)

. Interrupt acknowledge (always locked)

. Indicate halt, or indicate shutdown

O NG R DN =

Table 12 shows the encoding of the bus cycle definition
signals for each bus cycle. See the Bus Cycle Definition
Signals section, on page 35 for additional information.

When the Am3B6SE microprocessor bus is not per-
forming one of the activities listed above, itis either idie
or in the Hold Acknowledge state, which may be
detected externally. The idle state can be identified by

the Am386SE CPU giving no further assertions on its
address strobe output (ADS) since the beginning of its
most recent cycle, and the most recent bus cycle having
been terminated. The Hold Acknowledge state is identi-
fied by the Am386SE microprocessor asserting its Hold
Acknowledge (HLDA) output.

Bus Functional Description

The Am3B6SE microprocessor has separate, parallel
buses for data and address. The data bus is 16-bits in
width and is bidirectional. The address bus provides a
24-bit value using 23 signals for the 23 upper-order
address bits and 2 Byte Enable signals to directly indi-
cate the active bytes. These buses are interpreted and
controlled by several definition signals.

The shortest time unit of bus activity is a bus state. Abus
state is one processor clock period (two CLK2 periods)
in duration. A complete data transfer occurs during a
bus cycle, composed of two or more bus states.

The fastest Am386SE microprocessor bus cycle
requires only two bus states. For example, three con-
secutive bus read cycles, each consisting of two bus
states, are shown in Figure 18. The bus states in each
cycle are named T1 and T2. Any memory or /O address
may be accessed by such a two-state bus cycle, if the
external hardware is fast enough.

Cycle 1 Cycle 2 Cycle 3
Non-Pipelined Non-Pipelined Non-Pipelined
(Read) (Read) (Read)
T T2 T T2 T T2
ot | o2 o1 o2 o1 o2 ot]o2]|or]|e2]| o1]e2] o1
el Ly Uy urryyuyyguyd
BHE, %'DA%?‘VC‘/L_- [TIX Valid 1 Valid 2 Valid 3
(Output)
v L NV NV NV N
(lnp% [
ReRoY [_ |/ N\ A . 4
(Om [TIX Valid 1 Valid 2 Valid 3
i B e

Note:
Fastest non-pipelined cycles consist of T1 and T2.

Figure 18. Fastest Read Cycles with Non-Pipelined Address Timing

18420A-020

Am386SE Microprocessor a1

n AMD

PRELIMINARY

Every bus cycle continues until itis acknowledged by the
external system hardware, using the Am386SE micro-
processor READY input. Acknowledging the bus cycle
atthe end of the first T2 results in the shortest bus cycle,
requiring only T1 and T2. If READY is not immediately
asserted however, T2 states are repeated indefinitely
until the READY input is sampled active.

The address pipelining option provides a choice of bus
cycle timings. Pipelined or non-pipelined address timing
is selectable on a cycle-by-cycle basis with the Next
Address (NA) input.

When address pipelining is selected, the address (BHE,
BLE, and A23-A1) and definition (W/R, D/C, MO, and
LOCK) of the next cycle are available before the end of
the current cycle. To signal their availability, the
Am3B6SE microprocessor address status output (ADS)

is asserted. Figure 19 illustrates the fastest read cycles
with pipelined address timing.

Note from Figure 19 the fastest bus cycles using pipe-
lined address require only two bus states, named T1P
and T2P. Therefore, cycles with pipelined address tim-
ing allow the same data bandwidth as non-pipelined
cycles, but address-to-data access time is increased by
one T-state time compared to that of a non-pipelined
cycle.

Cycle 1 Cycle 2 Cycle 3
Pipelined Pipelined Pipelined
(Read) (Read) (Read)
TP T2P TP T2P T1P T2P
o1]oz|erlozfot]oa|or|o2|er]oz]|et]ez

(nputy L _—LJ_I__I_I_I__I_I'T_—I_I—_"I_I_\T_I_I_L__L

BHE, BLE, A23-A1, Valid 1 Valid 2
M/— DIC, WR a a

Valid 3 Valid 4

(Output)

oupw L /

m —
(Input) \

R('IEAD\; am K_/_ﬂ__/——__/
nput
LOCK Valid 1 Valid 2 Valid 3
(Output)
—_—— ——t el N2 >l 1
{Input dunng Flead) I: _|_>_ In1 In2 n3
Note:
Fastest pipelined bus cycles consist of T1P and T2P,
Figure 19. Fastest Read Cycles with Pipelined Address Timing 18420A-021

42 Am386SE Microprocessor

PRELIMINARY

AMD a

Read and Write Cycles

Data transfers accur as a result of bus cycles, classified
as read or write cycles. During read cycles, data is trans-
ferred from an external device to the processor. During
write cycles, data is transferred from the processor to an
external device.

Two choices of address timing are dynamically select-
able: non-pipelined or pipelined. After an idle bus state,
the processor always uses non-pipelined address tim-
ing. However, the NA (Next Address) input may be
asserted to select pipelined address timing for the next
bus cycle. When pipelining is selected and the
Am386SE microprocessor has a bus request pending
internally, the address and definition of the next cycle is
made available even before the current bus cycle is
acknowledged by READY.

Terminating a read or write cycle, like any bus cycle,
requires acknowledging the cycle by asserting the
READY input. Until acknowledged, the processor
inserts wait states into the bus cycle, to allow adjustment
for the speed of any external device. External hardware,
which has decoded the address and bus cycle type,
asserts the READY input at the appropriate time.

At the end of the second bus state within the bus cycle,
READY is sampled. At that time, if external hardware
acknowledges the bus cycle by asserting READY, the
bus cycle terminates as shown in Figure 20. f READY is
negated, as in Figure 21, the Am386SE microprocessor
executes another bus state (a wait state) and READY is
sampled again at the end of that state. This continues
indefinitely until the cycle is acknowledged by READY
asserted.

When the current cycle is acknowledged, the Am386SE
microprocessor terminates it. When a read cycle is
acknowledged, the Am386SE CPU latches the informa-
tion present at its data pins. When a write cycle is
acknowledged, the Am3B6SE microprocessor's write
data remains valid throughout phase one of the next bus
state, to provide write data hold time.

idle Cycle 1 Cycle 2 Cycle 3 Idle Cycle 4 Idle
Non-Pipelined Non-Pipelined Non-Pipelined Non-Pipelined
{Write) (Read) (Write) (Read)
Ti TH1 T2 T1 T2 T T2 Ti T T2 Ti
cee[MU uyuyuuuyuyuyuyuyuy
Pcessor ok [N/ N NSNS NN NN N NSNS
WA'Z’;EEE: [Valid 1 Valid 2 Valid 3 Valid 4
MO, DIC
wr[\
Aos[20 \ S N /
W[X
READY [
End Cycle 1 End gycle 2 End Cycle 3 End gycle 4
ook [Valid 1 Valid 2 Valid 3 Valid 4
p15-D0 [+————— Out ————G,r} out] __Grp.__
Note:

Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state; an active

bus cycle can immediately follow the write cycle.

Figure 20. Various Bus Cycles with Non-Pipelined Address (Zero Wait States)

18420A-022

Am386SE Microprocessor

43

nAMD PRELIMINARY

idle Cycle 1 Cycle 2
Non-Pipelined Non-Pipelined
(Read) (Write)
Ti T2 T T2

LG
/"

L

T3

R s

Idle Cycle 3 Idie
Non-Pipelined
(Read)
Ti T1 T2 T3

LY Ly

=L

Pracessor CLK_ NN NN NN NS
%ﬁ: Valid 1 Valid 2 Valid 3
M/G, DIC
WR [
ADs [/ NV /
W[
READY [
End Cycle 1 End Cycle 2 End Cycle 3
ock [Valid 1 Valid 2 Valid 3
o18-00 [=== 1=~ o4 S I R <01
I [|
Note:

Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state;
an active bus cycle can immediately follow the write cycle.

18420A-023

Figure 21. Various Bus Cycles with Non-Pipelined Address (Various Number of Wait States)

44 Am386SE Microprocessor

nl

PRELIMINARY

AMD a

Non-Pipelined Address

Any bus cycle may be performed with non-pipelined
address timing. For example, Figure 20 shows a mix-
ture of read and write cycles with non-pipelined address
timing. Figure 20 shows that the fastest possible cycles
with non-pipelined address have two bus states per bus
cycle. The states are named T1 and T2. In phase one of
T1, the address signals and bus cycle definition signals
are driven valid and, to signal their availability, address
strobe (ADS) is simultaneously asserted.

During read or write cycles the data bus behaves
as follows. If the cycle is a read, the Am386SE micropro-
cessor floats its data signal to allow driving by the exter-
nal device being addressed. The Am386SE
microprocessor requires that all data bus pins be at a
valid logic state (High or Low) at the end of each read
cycle, when READY is asserted. The system must be
designed to meet this requirement. If the cycle is a write,
data signals are driven by the Am386SE CPU beginning
in phase two of T1 until phase one of the bus state fol-
lowing cycle acknowledgment.

Figure 21 illustrates non-pipelined bus cycles with one
walit state added to Cycles 2 and 3. READY is sampled
inactive at the end of the first T2 in Cycles 2 and 3.
Therefore, Cycles 2 and 3 have T2 repeated again. At
the end of the second T2, READY is sampled active.

When address pipelining is not used, the address and
bus cycle definition remain valid during al! wait states.
When wait states are added, and it is desirable to main-
tain non-pipelined address timing, it is necessary to
negate NA during each T2 state, except the last one, as
shown in Figure 21, Cycles 2 and 3. If NA is sampled
active during a T2 other than the last one, the next state
would be T2l or T2P instead of another T2.

The bus states and transitions, when address pipelining
is not used, are completely illustrated by Figure 22. The
bus transitions between four possible states, T1, T2, Ti,
and Th. Bus cycles consist of T1 and T2, with T2 being
repeated for wait states. Otherwise the bus may be idle,
Ti, or in the Hold Acknowledge state Th.

HOLD Negated « No Request

OLD Asserted

HOLD Negated

HOLD Negated o
Request Pending

READY Asserted « HOLD Negated No Request

No Request Request Pending »
HOLD Negated

ESI

Asserted

Note:
Bus States:

()

HOLD Asserted

READY Asserted « HOLD Asserted

ALWAYS

\ 4

READY Asserted »
HOLD Negated o
Request Pending
READY Negated
NA Negated

T1—First clock of a non-pipelined bus cycle (Am386SE CPU drives new address and asserts ADS).
T2—Subsequent clocks of a bus cycle when NA has not been sampled asserted in the current bus cycle.

Ti—lIdle state.

Th—Hold Acknowledge state (Am386SE CPU asserts HLDA).

The fastest bus cycle consists of two states: T1 and T2.

Four basic states describe bus operation when not using pipelined address.

18420A-024

Figure 22. Bus States (Not Using Pipelined Address)

Am386SE Microprocessor 45

:' AMD

PRELIMINARY

Bus cycles always begin with T1. T1 always leads to T2.
If a bus cycle is not acknowledged during T2 and NA is
inactive, T2 is repeated. When a cycle is acknowledged
during T2, the following state will be T1 of the next bus
cycle, if a bus request is pending internally, or Ti, if there
is no bus request pending, or Th, if the HOLD input is
being asserted.

Use of pipelined address allows the Am386SE micro-
processor to enter three additional bus states not shown
in Figure 22. Figure 26, is the complete bus state dia-
gram, including pipelined address cycles.

Pipelined Address

Address pipelining is the option of requesting the
address and the bus cycle definition of the next internally

pending bus cycle before the current bus cycle is
acknowledged with READY asserted. ADS is asserted
by the Am386SE microprocessor when the next
address is issued. The address pipelining option is con-
trolled on a cycle-by-cycle basis with the NA input signal.

Once a bus cycle is in progress and the current address
has been valid for at least one entire bus state, the NA
input is sampled at the end of every phase one until the
bus cycle is acknowledged. During non-pipelined bus
cycles, NA is sampled at the end of phase one in every
T2. An example is Cycle 2 in Figure 23, during which NA
is sampled at the end of phase one of every T2 (it was
asserted once during the first T2 and has no further
effect during that bus cycle).

ldle Cycle 1 Cycle 2 Cycle 3 Cycle 4 Idle
Non-Pipelined Non-Pipelined Pipelined Pipelined
(Write) (Read) (Write) (Read)

T T2 'R
CLK2 [

e

Processor CLK |:]

T2P T1P T2P T1P T2l

BHE, BLE,
A23-A1, Valid 1 Valid 2 Valid 3 Valid 4
M/, D/T £ //v
wR [/ /
ADS I: 4 \— >— ;—/
NA POOOPXXXIXXXX

XXXX

Valid 2

Note:

Following any idle bus state (Ti), addresses are non-pipelined. Within non-pipelined bus cycles, NA js only sampled during
wait states. Therefore, to begin address pipelining during a group of non-pipelined bus cycles requires a non-pipslined

cycle with at least one wait state (Cycle 2 above).

18420A-025

Figure 23. Transitioning to Pipelined Address During Burst of Bus Cycles

46 Am386SE Microprocessor

—

-

PRELIMINARY

AMD n

liNAis sampled active, the Am386SE microprocessoris
free to drive the address and bus cycle definition of the
next bus cycie, and assert ADS, as soon as it has a bus
request internally pending. It may drive the nextaddress
as early as the next bus state, whether the current bus
cycle is acknowledged at that time or not.

Regarding the details of address pipelining, the
Am386SE CPU has the following characteristics:

1.

The next address may appear as early as the bus
state after NA was sampled active (see Figure 23
and Figure 24). In that case, state T2P is entered
immediately. However, when there is not an internal
bus request already pending, the next address will
not be available immediately after NA is asserted
and T2| is entered instead of T2P (see Figure 25,
Cycle 3). Provided the current bus cycle is not yet

acknowledged by READY asserted, T2P will be
entered as soon as the Am386SE microprocessor
does drive the next address. External hardware
should therefore observe the ADS output as con-
firmation the next address is actually being driven on
the bus.

. Any address which is validated by a pulse on the

ADS output will remain stable on the address pins for
at least two processor clock periods. The Am386SE
CPU cannot produce a new address more frequently
than every two processor clock periods (see
Figure 23, Figure 24, and Figure 25).

. Only the address and bus cycle definition of the very

next bus cycle is available. The pipelining capability
cannot look further than one bus cycle ahead (see
Figure 25, Cycle 1).

idle Cycle 1 Cycle 2 Cycle 3 Cycle 4 Idle
Non-Pipelined Pipelined Pipelined Pipelined
(Write) (Read) (Write) (Read)
T1 T2P TP | T2P T1P T2P | TIP T2I T21

Processor [—
CLK

\f

e [_MUPLUL LU
/ V—

ryuyuyuyuyyy
VaVva

i
VavavaVaVa

BHE, BLE, Valid 1

Valid 3

A23-A1,
M/0, DIE

[~

W/ﬁ[

[~

s [

[

READY [N R
Tock [Valid 1 Valid 2 Valid 3 Valid 4
p15-00 [4———|- Out)_.-.__GP_(Oout)—-———-L——Qrp-——
|
18420A-026
Note:

Following any idle bus state (Ti) the address is always non-pipelined and NA is only sampled during wait states. To start
address pipelining after an idle state requires a non-pipelined cycle with at least one wait state (Cycle 1 above). The pipelined
cycles (2, 3, and 4 above) are shown with various numbers of wait states.

Figure 24, Fastest Transition to Pipelined Address Following Idle Bus State

Am386SE Microprocessor

47

I"l AMD

PRELIMINARY

The complete bus state transition diagram, including
operation with pipelined address, is given in Figure 33.
Note thatitis a superset of the diagram for non-pipelined

address only, and the three additional bus states for a
pipelined address are drawn in bold.

pipelined cycle.

The fastest bus cycle with pipelined address consists of
just two bus states, T1P and T2P (recall for non-pipe-
lined addressiitis T1 and T2). T1P is the first bus state of

CLKZI:_

Processor CLK[]

Cycle 1
Pipelined
(Write)

T2P T2P TiP

Cycle 2

Pipelined

(Read)
T2

T2P

(UL LY
/—/—

Cycle 3

Pipelined

(Write)
T2l

(L
N/ |

UL
Vava

Cycle 4
(Read)

T2P TP

BHE, BLE,
A23-A1,

Valid 1 Valid 2

Valid 3

Valid 4

M/O, D/C

[

W/ﬁ[

ADS is asserted as soon
as the CPU has another

Pipelined

bus cycle to perform, which
is not always immediately

after NA is asserted.

|

_V_L
Note: ADS is
asserted in every

T2P state.

13-

'

Asserting NA more
than once during any
cycle has no additional

v

NA could have been asserted in
T1P if desired. Assertion now is
the latest time possible to allow

—

As long as the CPU enters the T2P
state during Cycle 3, address
pipelining is maintained in Cycle

ks

X

effects. the CPU to enter T2P state to
maintain pipelining in Cycle 3.
rerDy [| AXX XA AXX R | AXX R | AXX
LOCK I: Valid 1 Valid 2 Valid 3 Valid 4
I
p15-Do [_Out X Olut —T1———1 -—{’P—(‘l)”‘)
|

18420A—027

Figure 25. Details of Address Pipelining During Cycles with Wait States

48

Am386SE Microprocessor

C

I

I

n

PRELIMINARY

AMD l"l

initiating and Maintaining Pipelined Address

Using the state diagram Figure 26, observe the transi-
tions from an idle state (Ti) to the beginning of a pipe-
lined bus cycle (T1P). From an idle state (Ti) the first bus
cycle must begin with T1, and is therefore a non-pipe-
lined bus cycle. The next bus cycle will be pipelined,
however, provided NA is asseried and the first bus cycle
endsin a T2P state (the address for the next bus cycle is
driven during T2P). The fastest path from an idle state to
a bus cycle with pipelined address is shown in bold
below:

Ti, Ti, Ti, T1-T2-T2P, TIP-T2P,

Idle Non-Pipelined Pipelined
States Cycle Cycle

T1-T2-T2P are the states of the bus cycle that establish
address pipelining for the next bus cycle, which begins
with T1P. The same is true after a bus hold state, shown
below:

Th, Th, Th, T1-T2-T2P, T1P-T2P,

Hold Acknowledge Non-Pipelined Pipelined
States Cycle Cycle

The transition to pipelined address is shown functionally
by Figure 24, Cycle 1. Note that Cycle 1 is used to transi-
tion into pipelined address timing for the subsequent
Cycles 2, 3, and 4, which are pipelined. The NA input is
asserted at the appropriate time to select address pipe-
lining for Cycle 2, 3, and 4.

Once a bus cycle is in progress and the current address
has been valid for one entire bus state, the NA input is
sampled at the end of every phase one until the bus
cycle is acknowledged. Sampling begins in T2 during
Cycle 1 in Figure 24. Once NA is sampled active during
the current cycle, the Am386SE microprocessor is free
to drive a new address and bus cycle definition on the
bus as early as the next bus state. In Figure 24, Cycle 1
for example, the next address is driven during state T2P.
Thus, Cycle 1 makes the transition to pipelined address
timing, since it begins with T1 but ends with T2P.
Because the address for Cycle 2 is available before
Cycle 2 begins, Cycle 2 is called a pipelined bus cycle,
and it begins with T1P. Cycle 2 begins as soon as
READY asserted terminates Cycle 1.

Examples of transition bus cycles are Figure 24, Cycle 1
and Figure 23, Cycle 2. Figure 24 shows transition dur-
ing the very first cycle after an idle bus state, which is the
fastest possible transition into address pipelining.
Figure 23, Cycle 2 shows a transition cycle occurring
during a burst of bus cycles. In any case, a transition
cycle is the same whenever it occurs: it consists at least
of T1, T2 (NA is asserted at that time), and T2P (pro-
vided the Am386SE microprocessor has an internal bus
request already pending, which it almost always has).
T2P states are repeated if wait states are added to the
cycle.

Note that only three states (T1, T2, and T2P) are
required in a bus cycle performing a transition from non-
pipelined address into pipelined address timing (e.g.,
Figure 24, Cycle 1). Figure 24, Cycles 2, 3, and 4 show
that address pipelining can be maintained with two-state
bus cycles consisting only of T1P and T2P.

Once a pipelined bus cycle is in progress, pipelined tim-
ing is maintained for the next cycle by asserting NA and
detecting that the Am386SE microprocessor enters T2P
during the currentbus cycle. The current bus cycle must
end in state T2P for pipelining to be maintained in the
next cycle. T2P is identified by the assertion of ADS.
Figure 23 and Figure 24, however, each show pipelin-
ing ending after Cycle 4, because Cycle 4 ends in T2I.
This indicates the Am386SE CPU did not have an inter-
nal bus request prior to the acknowledgment of Cycle 4.
If a cycle ends with a T2 or T2l, the next cycle will notbe
pipelined.

Realistically, address pipelining is almost always main-
tained as long as NA is sampled asserted. This is so
because in the absence of any other request, a code
prefetch request is always internally pending until the
instruction decoder and code prefetch queue are com-
pletely full. Therefore, address pipelining is maintained
for long bursts of bus cycles, if the bus is available (i.e.,
HOLD inactive), and NA is sampled active in each of the
bus cycles.

Interrupt Acknowledge (INTA) Cycies

In response to an interrupt request on the INTR input
when interrupts are enabled, the Am386SE micropro-
cessor performs two interrupt acknowledge cycles.
These bus cycles are similar to read cycles in that bus
definition signats define the type of bus activity taking
place, and each cycle continues until acknowledged by
READY sampled active (see Figure 27).

The state of A2 distinguishes the first and second inter-
rupt acknowledge cycles. The byte address driven dur-
ing the first interrupt acknowledge cycle is 4 (A23-A3,
A1, BLE Low, A2 and BHE High). The byte address
driven during the second interrupt acknowledge cycle is
0 (A23-A1, BLE Low, and BHE High).

The LOCK output is asserted from the beginning of the
first interrupt acknowledge cycle until the end of the
second interrupt acknowledge cycle. Four idle bus
states (Ti) are inserted by the Am386SE microprocessor
between the two interrupt acknowledge cycles for com-
patibility with spec TRHRL of the 8259A Interrupt
Controller.

During both interrupt acknowledge cycles, D15-D0
float. No data is read at the end of the first interrupt
acknowledge cycle. At the end of the second interrupt
acknowledge cycle, the Am386SE microprocessor will
read an external interrupt vector from D7-D0 of the data
bus. The vector indicates the specific interrupt number
(from 0-255) requiring service.

Am386SE Microprocessor 419

n AMD

PRELIMINARY

HOLD Asserted

HOLD Negated
No Request READY Asserted ¢

HOLD Asserted

HOLD Negated »
Request Pending

READY Asserted »
HOLD Asserted

HOLD (No Request +
Asserted HOLD Assertad) « NA Asserted ¢
NA Asserted » (HOLD Asserted +
RESET _ READY Negated No Request)
Asserted — READY Asserted ¢
A HOLD Negated ¢
v v No Request
-\ Always

T

Request Pending «
HOLD Negated

READY Asserted ¢
HOLD Negated

Request Pending
HOLD Negated «
No Request READY Negated «
READY Asserted » NA Negated
HOLD Negated »
Request Pending
\ READY Negated «
NA Asserted »
HOLD Negated »
READY Asserted « HOLD Negated » No Request Request Pending
Notes:
Bus States:
T1-First clock of a non-pipelined bus cycle (Am386SE CPU drives new READY Negated »
address and asserts ADS). - (No Request +
T2-Subsequent clocks of a bus cycle when NA has not been sampled ~ HOLD Asserted)
asserted in the current bus cycle. READY Negated »

T2I-Subsequent clocks of a bus cycle when NA has been sampled
asserted in the current bus cycle but there is not yet an internal bus
request pending (Am386SE CPU will not drive new address or assert
ADS).

T2P-Subsequent clocks of a bus cycle when NA has been sampled
asserted in the current bus cycle and there is an internal bus request
pending (Am386SE CPU drives new address and asserts ADS).
T1P-First clock of a pipelined bus cycle.

Ti-Idle state.

Th—Hold Acknowledge state (Am386SE CPU asserts HLDA).
Asserting NA for pipelined addrass gives accass to three more bus
states: T2, T2F, and T1P.

Using pipelined address, the fastest bus cycle consists of T1P and
T2P,

Figure 26. Complete Bus States (Including Pipelined Address)

Request Pending »

HOLD Negated NA Asserted «

HOLD Negated »
Request Pending

READY Asserted

18420A-028

50 Am386SE Microprocessor

PRELIMINARY

AMD I‘J

Halt Indication Cycle

The execution unit halts as a result of executing a HLT
instruction. Signaling its entrance into the halt state, a
halt indication cycle is performed. The halt indication
cycle is identified by the state of the bus definition sig-
nals shown in Figure 28, Bus Cycle Definition Signals,
and an address of 2. The halt indication cycle must be
acknowledged by READY asserted. A halted Am386SE
CPU resumes execution when INTR (if interrupts are
enabled), NMI, or RESET is asserted.

Shutdown Indication Cycie

The Am386SE microprocessor shuts down as a result of
a protection fault while attempting to process a double
fault. Signaling its entrance into the shutdown state, a
shutdown indication cycle is performed. The shutdown
indication cycle is identified by the state of the bus defini-
tion signals shown in the Bus Cycle Definition Signals
section and an address of 0. The shutdown indication
cycle must be acknowledged by READY asserted. A
shut-down Am386SE microprocessor resumes execu-
tion when NMt or RESET is asserted (see Figure 29).

Entering and Exiting Hold Acknowledge

The Bus Hold Acknowledge state (Th) is entered in
response to the HOLD input being asserted. In the Bus
Hold Acknowledge state, the Am386SE microprocessor
floats all outputs or bidirectional signals, except for
HLDA. HLDA is asserted as long as the Am386SE CPU
remains in the Bus Hold Acknowledge state. In the Bus
Hold Acknowledge state, all inputs except HOLD, FLT,
and RESET are ignored.

Previous Interrupt Idle Interrupt Idle
Cycle Acknowledge (4 Bus States) Acknowledge
Cycle 1 Cycle 2
T2 T1 T2 T2 Ti Ti Ti Ti T1 T2 T2l Ti

cue [_MMU U Uy Uy uyuyuyoy s

Processor CLK [—_/_x/__/'_/__/__/__/'_/__/_ N_/"|
BHE[

BLE, A23-A3,)
A1, WIO.L
D/C, WR
a2 K
LOCK [/|
[y
s [/ /
NA [&
READY [
Ignored Vector
p7-00 [4———f——F———— -t ——t——— - —
Ignored Ignored
D15—DS[—‘——-————T———T-— —_ e T T —
Figure 27. Interrupt Acknowledge Cycles 18420A—029

Note:

Interrupt Vector (0—~255) is read on D7-D0 at end of second Interrupt Acknowledge bus cycle. Because each Interrupt
Acknowledge bus cycle is followed by idle bus states, asserting NA has no practical effect. Choose the approach which is sim-
plest for your system hardware design.

Am386SE Microprocessor

51

n AMD

PRELIMINARY

Th may be entered from a bus idle state, as in Figure 30,
or after the acknowledgment of the current physical bus
cycle, ifthe LOCK signal is not asserted, as in Figure 31
and Figure 32.

Th is exited in response to the HOLD input being
negated. The following state will be Tiif no bus requestis
pending, as in Figure 30. The following bus state will be
T1if a bus request is internally pending, as in Figure 31
and Figure 32. This exited in response to RESET being
asserted.

If a rising edge occurs on the edge-triggered NMI in- put
while in Th, the event is remembered as a non-mask-
able interrupt 2 and is serviced when Th is exited, unless
the Am386SE microprocessor is reset before Th is
exited.

Reset During Hold Acknowledge

RESET being asserted takes priority over HOLD being
asserted. If RESET is asserted while HOLD remains
asserted, the Am386SE microprocessor drives its pins
to defined states during reset, as in Table 14 (Pin State

During Reset on page 39), and performs internal reset
activity as usual.

It HOLD remains asserted when RESET is inactive, the
Am386SE CPU enters the Hold Acknowledge state
before performing its first bus cycle, provided HOLD is
still asserted when the Am386SE microprocessor would
otherwise perform its first bus cycle.

FLOAT

Activating the FLT input floats all Am386SE micropro-
cessor bidirectional and output signals, including HLDA.
Asserting FLT isolates the Am386SE microprocessor
from the surrounding circuitry.

As the Am386SE microprocessor is packaged in a sur-
face mount PQFP, it cannot be removed from the
motherboard when In-Circuit Emulation (ICE) is
needed. The FLT input aliows the Am386SE CPU to be
electrically isolated from the surrounding circuitry. This
allows connection of an emulator to the Am386SE
microprocessor PQFP without removing it from the
PCB. This method of emulation is referred to as ON-Cir-
cuit Emulation (ONCE).

Cycle 1 Cycle 2
Non-Pipelined Non-Pipelined
(Write) (Halt)

T T2 T1 T2

oue [MUY
Processor Clock I: __/—_/—\/__/—

Idle

Ti Ti Ti Ti

BHE, A1, - [— Am386SE CPU remains halted untit
MG, W/R Valid 1 | INTR, NMI, or RESET is asserted.
BLE, D/C - Am386SE CPU responds to HOLD
A23-A2, Valid 1 input while in the Halt state.
ADS [T
[NV /
W
READY [
Note: Halt cycle must be acknowledged by
READY asserted. Wait states may be added
to the cycle if desired.
LOCK [Valid 1 Valid 2
D15-00 [Out Outt | X Undefined)— (Floating) {———] E—
I | | I 18420A-030
Figure 28. Example Halt Indication Cycle from Non-Pipelined Cycle
52 Am386SE Microprocessor
_ _ - T

H

—

PRELIMINARY

AMD n

Entering and Exiting FLOAT

FLT is an asynchronous, active Low input. It is recog-
nized on the rising edge of CLK2. When recognized, it
aborts the current bus cycle and fioats the outputs of the
Am386SE microprocessor (Figure 34). FLT must be
held Low for a minimum of 16 CLK2 cycles. RESET
should be asserted and held asserted until after FLT is
deasserted. This will ensure that the Am386SE CPU will
exit FLOAT in a valid state.

Asserting the FLT input unconditionally aborts the cur-
rent bus cycle and forces the Am386SE CPU into the
FLOAT mode. Since activating FLT unconditionally
forces the Am386SE CPU into FLOAT mode, the
Am3B6SE microprocessor is not guaranteed to enter
FLOAT in a valid state. After deactivating FLT, the
Am386SE CPU is not guaranteed to exit FLOAT mode in
a valid state. This is not a problem, as the FLT pin is
meant to be used only during ONCE. After exiting
FLOAT, the Am386SE microprocessor must be reset to
return it to a valid state. Reset should be asserted before

FLT is deasserted. This will ensure that the Am386SE
CPU will exit FLOAT in a valid state.

FLT has aninternal pull-up resistor, and if it is not used it
should be unconnected.

Bus Activity During and Following Reset

RESET is the highest priority input signal, capable of
interrupting any processor activity when itis asserted. A
bus cycle in progress can be aborted atany stage, oridle
states and Bus Hold Acknowledge states discontinued,
so that the reset state is established.

RESET should remain asserted for at least 15 CLK2
periods to ensure it is recognized throughout the
Am386SE microprocessor, and at least 80 CLK2 peri-
ods if self-test is going to be requested at the falling
edge. RESET asserted pulses less than 15 CLK2 peri-
ods may not be recognized. RESET pulses less than
80 CLK2 periods followed by a self-test may cause the
self-test to report a failure when no true failure exists.

Cycle 1 Cycle 2 Idle
Pipslined Pipelined
(Read) (Shutdown)
TP T2P TP T2l Ti Ti Ti Ti
oz [gipigipipigipipt
Processor CLK [—vvv\f\f\f
BAE |~ Am386SE CPU remains
HE,MIO. [] Vaiid 1 shutdown until NMI or RESET
WA :
o is asserted.
BIE, BLE is Low for
A2a-A1,06 [[vaiar \ 5" e Am386SE CPU
responds to HOLD
input while in the
ADS / Shutdown state.
NA
READY

Note: Shutdown cycle must be acknowledged

by READY asserted. Wait states may be added

to the cycle if des:red

ok [Valid 1 Valld 2
D15-D0 [In Undefined (Floating) 4 —=——1 | —— —|
| 18420A—031
Figure 29. Example Shutdown Indication Cycle from Non-Pipelined Cycle
Am386SE Microprocessor 53

n AMD

PRELIMINARY

Provided the RESET falling edge meets setup and hold
times (125 and t26), the internal processor clock phaseis
defined at that time as illustrated by Figure 33 and
Figure 40.

A self-test may be requested at the time RESET goes
inactive by having the BUSY input at a Low level, as
shown in Figure 33. The self-test requires approxi-
mately (220 + 60) CLK2 periods to complete. The self-
test duration is not affected by the test results. Even
if the self-test indicates a problem, the Am386SE
microprocessor attempts to proceed with the reset
sequence afterwards.

After the RESET falling edge (and after the self-test
it it was requested), the Am3B6SE microprocessor
performs an internal initialization sequence for approxi-
mately 350 to 450 CLK2 periods.

Self-Test Signature

Upon completion of self-test (if self-test was requested
by driving BUSY Low at the falling edge of RESET) the
EAX register will contain a signature of 00000000H,
indicating the Am386SE microprocessor passed its

self-test of microcode and major PLA contents with no
problems detected. The passing signature in EAX,
00000000H, applies to all revision levels. Any non-zero
signature indicates the unit is faulty.

Component and Revision ldentifiers

To assist users the Am386SE microprocessor, after
reset, holds a component identifier and revision identi-
fier in its DX register. The Am386SE microprocessor,
after RESET, holds a component identifier and revision
identifier in its DX register. In the DH portion, the lower
nibble 3H refers to the Am386 CPU architecture. The
upper nibble 2H refers to the second version of the
Am386 microprocessor family. In the lower DL portion,
the upper nibble EH identifies the processor as a
member of the Am386 E Series. The lower nibble holds
the unsigned binary number related to the component
revision level. The revision identifier will, in general,
chronologically track those component steppings which
are intended to have certain improvements or distinction
from previous steppings. The Am386SE microproces-
sor revision identifier will track that of the Am386DE
CPU where possible.

Hold Acknowledge

| ide |

fe
Th
CLK2 [|

Processor CLK []

(L UL UL
N NS NS

| 1die |
»
Th Th

(&

8G o

HOLD |:]

R

HLDA [

BHE, BLE,
A23-A1, MO,
D/C, W/R

ADS

—- (Fioating) - ———

\
‘——- (Floating) 4———+

NA

READY

LOCK

1 1 1 1M

D15-DO

Note:

—= (Floating} |~~~

————- ——- (Floating) 4 ———

18420A-032

For maximum design flexibility, the Am386SE CPU has no internal pull-up resistors on its outputs. The design may require an
external pull-up on ADS and other outputs to keep them negated during float periods.

Figure 30. Requesting Hold from Idie Bus

54 Am386SE Microprocessor

PRELIMINARY AMDn

Cycle 1 Hold Cycle 2
Non-Pipelined Acknowledge Non-Pipelined
(Read) (Write)

ugigipgizgiziziginigigigigigizl
Prcessor CLK ["N N N N/ N N N]

HOLD
[/ HOLD asserted no late\r
than READY asserted
HLDA [
BHE, BLE, _ (Floating)
A23-A1, [valid1 | | [Dceeeepemaaaeny < Valid 2

MAC, DT, WR

>
o ... 2 —

ReADY [
{Negated, or Last-Locked Cycle)
LOCR [Valid 1 R R — K Valid 2
Floati Floatin:
D15-D0 [- --_-_S-cia.lr.lg.) N >»e-eae-e-- (---I-g-)-- -----< Qut
(Floating)

18420A~-033

Note:
HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (23 and t24) requirements are
met. This waveform is useful for determining Hold Acknowledge latency.

Figure 31. Requesting Hold from Active Bus (NA Inactive)

Am386SE Microprocessor 55

nAMD PRELIMINARY

Cycle 1 Hold Cycle 2
Pipelined Acknowledge Non-Pipelined
(Write) (Read)

TP T2l T2l Th Th T1

cwe [T LML UL
N | N |

Processor CLK []

N N N N NS

Howo [EZXY_O‘\ AN

HOLD asserted in same bus
state as NA asserted

L~

HLDA [

BHE, BLE Floating)
BHE, BLE, - (

A23-AT1, [vaid [7 DO - === p=-===- K
M/IC, D/C, WR

Valid 2

b

O

[7))
M
|
N
>

reRoY [<

Z

egated, or Last-Locked Cycle
tock [Valid 1 s oo (Featng)] K Valid 2

p15-00 [_out X out S s A ER -]
|

18420A—034 ”

Note:
HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (123 and t24) requirements are
met. This waveform is useful for determining Hold Acknowledge latency.

Figure 32. Requesting Hold from Idle Bus (NA Active)

56 Am386SE Microprocessor

PRELIMINARY

AMD I‘:‘

CLK2

RESET

CLK (Internal)

Processor CLK

BUSY

ERROR

BHE, BLE, W/R,
MAG, HLDA

A23-A1,
D/C, LOCK

ADS

Notes:
"Approximately

|¢&——— Reset

FYPY

> 15 CLK2 duration if not
going to request seli-test.

requesting self-test.

[_Urn

2 80 CLK2 duration before

[_V

[XXX N\
[XY /NSNS

Internal —————¥}
Initialization Cycle 1
Non-Pipelined
If self-test is performed, add (Read)
220,60* to these numbers
T T2

r17 18 |19

[395* |396" 397*

398*

[o2]01]¢2

o1 ¢2]01

a8

$2
NS
4\

o1] 02

N_
N_

No seli-test
[{Note 1)
% Low to begin self-test (Note 2)

[RRRRRKAA

Up to 30 CLK2—¥
[Low || During Reset AXXXX)' Valid 1

Up to 30 CLK2—#

High|[During Reset XXX valid1__

Up to 30 CLI

[High|| During Reset /_

1. BUSY should be held stable for 8 CLK2 periods before and after the CLK2 period in which RESET falling edge occurs.
2. If self-test is requested, the outputs remain in their reset state as shown here.

Figure 33. Bus Activity from Reset Until First Code Fetch

18420A-035

CLK2

FLT

Data

Address

Reset

C
C
Control [
C
C
C

Figure 34. Entering and Exiting FLT

—\ o
------------------------------ C X
O T R = X
X__ Vaid) TR TN s Y
/
18420A-036

Am386SE Microprocessor

i‘.l AMD

PRELIMINARY

The revision identifier is intended to assist users to a
practical extent. However, the revision identifier value is
not guaranteed to change with every stepping revision,
or to follow a completely uniform numerical sequence,
depending on the type or intention of revision, or
manufacturing materials required to be changed.

Coprocessor Interfacing

The Am386SE microprocessor provides an automatic
interface for a 387SX math coprocessor. A 387SX math
coprocessor uses an /0O mapped interface driven auto-
matically by the Am386SE CPU and assisted by three
dedicated signals: BUSY, ERROR, and PEREQ.

As the Am386SE microprocessor begins supporting a
math coprocessor instruction, it tests the BUSY and
ERROR signais to determine if the coprocessor can
acceptiits nextinstruction. Thus, the BUSY and ERROR
inputs eliminate the need for any preamble bus cycles
for communication between processor and math copro-
cessor. A 387SX math coprocessor can be given its
command op-code immediately. The dedicated signals
provide instruction synchronization and eliminate the
need of using the WAIT op-code (9BH) for 387SX math
coprocessor instruction synchronization (the WAIT
opcode was required when the 8086 or 8088 was used
with the 8087 math coprocessor).

Custom coprocessors can be included in Am386SE
microprocessor-based systems by memory-mapped or
/O-mapped interfaces. Such coprocessor interfaces
allow a completely custom protocol, and are not limited
to a set of coprocessor protocol primitives. Instead,
memory-mapped or I/0O-mapped interfaces may use all
applicable instructions for high-speed coprocessor
communication. The BUSY and ERROR inputs of the
Am386SE microprocessor may also be used for the
custom coprocessor interface, if such hardware assistis
desired. These signals can be tested by the WAIT op-
code (9BH). The WAIT instruction will wait until the
BUSY input is inactive (interruptible by an NMI or
enabled INTR input), but generates an Exception 16
fault if the ERROR pin is active when the BUSY goes (or
is) inactive. If the custom coprocessor interface is
memory-mapped, protection of the addresses used for
the interface can be provided with the Am386SE CPU’s
on-chip segmentation mechanism. If the custom inter-
face is I/0O-mapped, protection of the interface can be
provided with the IOPL (I/O Privilege Level) mechanism.

A 387SX math coprocessor interface is I/O mapped as
shown in Table 16. Note that 387SX math coprocessor
interface addresses are beyond the OH-OFFFFH range
for programmed I/O. When the Am386SE microproces-
sor supports the 387SX math coprocessor, the
Am386SE CPU automatically generates bus cycles to
the coprocessor interface addresses.

Table 16. Math Coprocessor Port Address

Address in Am386SE 387SX-Compatible Math
CPU VO Space Coprocessor Register
8000F8H Op-Code Register
8000CH/8000FEH* Operand Register

Note: *Generated as 2nd bus cycle during Dword transfer.

Table 17. Connections for CMDO
and CMDT Inputs for a 387SX

Signal | Connection

CMDO | Connected directly to Am386SE CPU A2 signal
CMD1 | Connected to ground

To correctly map 387SX math coprocessor registers to
the appropriate I/O addresses, connect the CMDO and
CMD1 lines of a 387SX math coprocessor, as listed in
Table 17.

Software Testing for Math Coprocessor Presence

When software is used to test for math coprocessor
(3878X) presence, it should use only the following math
coprocessor op-codes: FINIT, FNINIT, FSTCW mem,
FSTSW mem, and FSTSW AX. To use other math
coprocessor op-codes when a math coprocessor is
known to be notpresent, first set EM = 1 in the Am386SE
CPU’s CRO register.

PACKAGE THERMAL SPECIFICATIONS

The Am386SE microprocessor is specified for operation
at a case temperature. The case temperature may be
measured in any environment to determine whether the
Am386SE CPU is within specified operating range. The
case temperature should be measured at the center of
the top surface opposite the pins.

The ambient temperature is guaranteed as long as Tcis
not violated. The ambient temperature can be calcu-
lated from the 8jc and 6ja from the following equations:

Ti=Tc+P e Ojc
Ta=Tj—-Pe Oja
Tc = Ta + P o [Oja — Ojc]

58 Am386SE Microprocessor

PRELIMINARY

AvD £

ELECTRICAL SPECIFICATIONS

The following sections describe recommended electri-
cal connections for the Am386SE microprocessor, and
its electrical specifications.

Power and Grounding

The Am386SE CPU has modest power requirements.
However, its high clock frequency and 47 output buffers
(address, data, control, and HLDA) can cause power
surges as multiple output buffers drive new signal levels
simultaneously. For clean on-chip power distribution at
high frequency, 14 V¢ and 18 Vgg pins separately feed
functional units of the Am386SE microprocessor.

Power and ground connections must be made to all
external Ve and Vgg pins of the Am386SE micropro-
cessor. On the circuit board, all Ve pins should
be connected on a V¢ plane, and Vgg pins should be
connected on a GND plane.

Power Decoupling Recommendations

Liberal decoupling capacitors should be placed near the
Am386SE microprocessor. The Am386SE CPU driving
its 24-bit address bus and 16-bit data bus at high fre-
quencies can cause transient power surges, particularly
when driving large capacitive loads. Low inductance
capacitors and interconnects are recommended for best
high frequency electrical performance. Inductance can
be reduced by shortening circuit board traces between
the Am386SE microprocessor and decoupling capaci-
tors as much as possible.

Resistor Recommendations

The ERROR, FLT, and BUSY inputs have internal
pull-up resistors of approximately 20 Kohms, and the
PEREQ input has an internal pull-down resistor of
approximately 20 Kohms, built into the Am386SE micro-
processor to keep these signals inactive when a 387SX-
compatible math coprocessor is not present in the
system (or temporarily removed from its socket).

In typical designs, the external pull-up resistors shown
in Table 18 are recommended. However, a particular
design may have reason to adjust the resistor values
recommended here, or alter the use of pull-up resistors
in other ways.

Other Connection Recommendations

For reliable operation, always connect unused inputs to
an appropriate signal level. NC pins should always
remain unconnected. Connection of NC pins to Vg or
Vgg Will resultin component malfunction or incompatibil-
ity with future steppings of the Am386SE CPU.

Particularly when not using the interrupts or bus hold (as
when first prototyping), prevent any chance of spurious
activity by connecting these associated inputs to GND.

Pin Signal
40 INTR
38 NMI

4 HOLD

If not using address pipelining, connect pin 6 (NA)
through a pull-up in the range of 20 Kohms to V.

Table 18. Recommended Resistor Pull-Ups to V¢

Pin | Signal | Pull-Up Value Purpose

16 DS 20 Kohms Lightly pull ADS inactive during Am386SE
+10% CPU Hold Acknowledge states

26 LOCK 20 Kohms Lightly puill COCK inactive during Am386SE
+10% CPU Hold Acknowledge states

Am386SE Microprocessor 59

n AMD

ABSOLUTE MAXIMUM RATINGS
Storage Temperature -65°C to +150°C
Ambient Temperature Under Bias . —65°C to +125°C

Stresses above those listed may cause permanent
damage lo the device. Functionality at or above these
limits is not implied. Exposure to ABSOLUTE MAXI-
MUM RATING conditions for extended periods of time -
may affect device reliability. M

PRELIMINARY

OPERATING RANGES
Supply Voltage with respectto Vgg . -0.5Vto +7.0V
Voltage on Other Pins -05VtoV, +0.5V

Operating ranges define those limits between which
the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges (25 MHz)
Ve =3.6 V—-5.5V; Toage = 0°C to +100°C (Extended Temperature Toage = —40°C to 100°C)

Preliminary
Symbol | Parameter Description Notes Min Max Unit
Vi Input Low Voltage (Note 1) -0.3 +0.8 Vv
ViH Input High Voitage 2.0 Vee +0.3 \
Viie CLK2 Input Low Voltage (Note 1) -0.3 +0.8 \
ViHe CLK2 Input High Voltage (25 MHz) 2.7 Ve +0.3 \
Vou Output Low Voltage
lo = 4mA: A23-A1, D15-D0 (Note 6) 0.45 A
lo. = 5mA: BHE, BLE, W/R, D/C, M/I0 0.45 \
LOCK, ADS, HLDA
Vo Output High Voltage
lon = 1.0 mA: A23-A1, D15-DO (Note 6) 2.4 v
lon = 0.2 mA: A23-A1, D15-D0 Vgc—-05 \
loy = 0.9 mA: BHE, BLE, W/R, D/C, 24 Vv he
TOCK, ADS, MO, HLDA ”
lon = 0.18 mMA:BHE, BLE, W/R, D/C, Vee—-0.5 \
LOCK, ADS, M0, HLDA
' Input Leakage Current (All pins except OV<sViNSVee
PEREQ, BUSY, ERROR, FLT) +15 HA
Iy Input Leakage Current (PEREQ pin) Vi =2.4 V (Note 2) 200 A
e Input Leakage Current
(BUSY, ERROR, FLT) V)L = 0.45V (Note 3) -400 HA
Lo Output Leakage Current 0.45V < Vout < Vee +15 HA
lcc Supply Current Vec Typ=5.0V Vec=56.5 v
CLK2 = 50 MHz: Oper. Freq. 25 MHz Icc Typ = 160 190 mA
lccse Standby Current (Note 5) Iccse Typ =20 pA 150 pA
Cin input or I/O Capacitance Fe = 1 MHz (Note 4) 10 pF
Cout Qutput Capacitance Fc = 1 MHz (Note 4) 12 pF
Celk CLK2 Capacitance Fc = 1 MHz (Note 4) 20 pF
Notes:

Tested at minimum operating frequency of the part.
1. The Min value, —0.3, is not 100% tested.
2. PEREQ input has an internal pull-down resistor.

3. BUSY, ERROR, and FLT inputs each have an intemal pull-up resistor.
4. Not 100% tested.

5. Measurement taken with inputs at rails; outputs unloaded; BUSY, FLT, and ERROR at Vg, and PEREQ at GND.

6. Outputs are CMOS and will pull rail-to-rail if the load is not resistive.

Am386SE Microprocessor

0

|

PRELIMINARY

aMD

DC CHARACTERISTICS over COMMERCIAL operating ranges (25 MHz)

Vee =3.0V-3.6V, Tcase = 0°C to +100°C (Extended Temperature Tgase = —40°C to 100°C)

Preliminary
Symbol | Parameter Description Notes Min Max Unit
Vi Input Low Voltage (Note 1) -03 +0.8 '
Vi Input High Voitage 2.0 Voo +0.3 v
ViLe CLK2 Input Low Voltage (Note 1) -0.3 +0.8 v
Vine CLK2 Input High Voltage (25 MHz) 2.4 Vee+ 0.3 \
Vou Output Low Voltage
loL = 0.5 mA: A23-A1, D15-D0O (Note 5) 0.2 \
lo. = 0.5 mA: BRE, BLE, W/R, D/C, 0.2 \Y
M/IG, LOCK, ADS, HLDA
lo. = 2mA: A23-A1, D15-DO 0.45 \'%
IOL = 2.5 mA: BHE, ﬁ, W/ﬁ, D/C‘, 0.45)
LOCK, ADS, M/10, HLDA
VoH Output High Voitage
lon = 0.1 mA: A23-A1, D15-DO {Note 5) Vec—-0.2 v
lon = 0.1 mA: BHE, BLE, W/R, D/C, (Note 6) Vec—-0.2 \
LOCK, ADS, M/IO, HLDA
loy = 0.5 mA: A23-A1, D15-D0 Vec—0.45 v
lon = 0.5 mA: BHE, BLE, W/R, D/C, Vec~0.45 Vv
LOCK, ADS, M/ID, HLDA
Iy input Leakage Current (All pins except 0V<SVNSVee
PEREQ, BUSY, ERROR, FLT) +10 pA
Iy Input Leakage Current ViH=Vge = 0.1V 300 HA
(PEREQ pin) Viy =24V (Note 2) 200 pA
e Input Leakage Current V=01V - 300 pA
(BUSY, ERROR, FLT) VL= 0.45 V (Note 3) - 200 HA
Lo QOutput Leakage Current 0.1V <Vour<Vee 15 pA
lce Supply Current (Note 6) Vee=33V Vec =36V
CLK2 = 50 MHz: Oper. Freq. 25 MHz lcc Typ =95 115 mA
lcese Standby Current (Note 6) lccse Typ = 10 pA 150 A
CiN Input or /O Capacitance Fc =1 MHz (Note 4) 10 pF
Court Output Capacitance Fc =1 MHz {Note 4) 12 pF
Ceik CLK2 Capacitance Fc = 1 MHz (Note 4) 20 pF
Notes:
1. The Min value, —0.3, is not 100% tested.
2. PEREQ input has an internal pull-down resistor.
3. BUSY, ERROR, and FLT inputs each have an internal pull-up resistor.
4. Not 100% tested.
5. Outputs are CMOS and will pull rail-to-rail if the load is not resistive.
6. Inputs at rails (Voc or Vss).
Am386SE Microprocessor 61
o - T - T T

T

n AMD

PRELIMINARY

DC CHARACTERISTICS over COMMERCIAL operating ranges (33 MHz)

Vec =45V ~55V; Tcage = 0°C to +100°C

Preliminary
Symbol | Parameter Description Notes Min Max Unit
ViL Input Low Voltage (Note 1) -0.3 +0.8 Vv
ViH Input High Voltage 2.0 Vee+0.3 v
ViLe CLK2 Input Low Voltage (Note 1) -0.3 +0.8 v
ViHe CLK2 Input High Voltage 2.7 Vee+0.3 v
VoL Output Low Voltage (Note 6)
loL = 4mA: A23-A1, D15-DO 0.45 \
loL = 5mA: BHE, BLE, W/R, D/C 0.45 \"
M/IO, LOCK, ADS, HLDA
Vou Output High Voltage {Note 6)
lon = 1mA: A23-A1, D15-DO 24 \
loy = 0.9 mA: BHE, BLE, W/R, D/C, 2.4 \
LOCK, ADS, MfIC, HLDA
loy = 0.2 mA: A23-A1, D15-DO Vee—05 v
IOH = 0.18 mA: BHE, EEE, W/ﬁ, D/C, VCC -05 \
LOCK, ADS, MfIO, HLDA
Iy Input Leakage Current (All pins except OV VNS Ve
PEREQ, BUSY, ERROR, FLT) +15 uA
I Input Leakage Current (PEREQ pin) Vi = 2.4V (Note 2) 200 pA
I Input Leakage Current (BUSY, ERROR, FLT) Vi = 0.45V (Note 3) -400 HA
Lo Output Leakage Current 0.45V £ Voyur € Vee +15 MHA
lcc Supply Current Vee =50V Vg =55V
CLK2 = 66 MHz: Oper. Freq. 33 MHz loc Typ =210 245 mA
locse Standby Current (Note 5) lccse Typ = 20 pA 20 150 pA
Cin Input Capacitance Fc =1 MHz (Note 4) 10 pF
Cout Qutput or I/O Capacitance Fc =1 MHz (Note 4) 12 pF
CeoLk CLK2 Capacitance Fec = 1 MHz (Note 4) 20 pF
Notes:

Tested at minimum operating frequency of the part.
1. The Min value, -0.3, is not 100% tested.

2. PEREQ input has an internal pull-down resistor.
3. BUSY, ERROR, andFLT inputs each have an internal pull-up resistor.
4. Not 100% tested.
5. Measurement taken with inputs at rails; outputs unloaded; BUSY, FLT, and ERROR at V¢, and PEREQ at GND.
6. Outputs are CMOS and will pull rail-to-rail if the load is not resistive.

62

Am386SE Microprocessor

I

I

PRELIMINARY

amp ¢

SWITCHING CHARACTERISTICS

The switching characteristics given consist of output
delays, input setup requirements, and input hold
requirements. All switching characteristics are relative
to the CLK2 rising edge crossing the 2.0 V level.

Switching characteristic measurement is defined by
Figure 35. Inputs must be driven to the voltage levels
indicated by Figure 35 when switching characteristics
are measured. Output delays are specified with mini-
mum and maximum limits measured, as shown. The
minimum delay times are hold times provided to exter-
nal circuitry. Input setup and hold times are specified as

minimums, defining the smallest acceptable sampling
window. Within the sampling window, a synchronous
input signal must be stable for correct operation.

Outputs ADS, W/R, D/C, M/iIO, LOCK, BHE, BLE,
A23-A1, and HLDA only change at the beginning of
phase one. D15-D0 (write cycles) only change at the
beginning of phase two. The READY, HOLD, BUSY,
ERROR, PEREQ, FLT, and D15-D0 (read cycles)
inputs are sampled at the beginning of phase one. The
NA, INTR, and NMI inputs are sampled at the beginning
of phase two.

Tx

Min Max

A23-At, BHE, BLE, "
ADS, M0, DT, Valid oy, \} 15y .~ Valid
W/R, LOCK, H Outputn ' 2V Output n+1
/R, LOCK, HLDA S

D15-DO I:

I-—-@—n—@—-

Valid
Qutput n

Min Max
15

NN

30V 7
NA, INTR, NMI [// 1

ov

SV a1 v}&

FLT, ERROR,
BUSY, PEREQ,

READY, HOLD, l:
D15-DO

Legend:

A — Maximum Output Delay Characteristic
B — Minimum Output Delay Characteristic
C — Minimum Input Setup Characteristic
D — Minimum Input Hold Characteristic

+—O—+—0—
a.z\\: %%.w I\(‘ag:ﬂ 5 ﬁ\\\\\
18420A—037

Figure 35. Drive Levels and Measurement Points for Switching Characteristics

Am386SE Microprocessor 63

n AMD

PRELIMINARY

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (25 MHz)

Ve =3.0-5V; Teage = 0°C to 100°C (Extended Temperature Range; Tcasg = —40°C to 100°C)

Symbol | Parameter Description Notes Ref. Min. | Max. | Unit
Figure
Am386SE CPU Hatf CLK2 freq. 0 25 MHz
1 Am386SE CPU 36 20 ns
2a CLK2 High Time at2v 36 7 ns
2b CLK2 High Time at (Voo -0.8V) 36 4 ns
3a CLK2 Low Time at2Vv 36 7 ns
3b CLK2 Low Time at0.8Vv 36 5 ns
4 CLK2 Fall Time (Vcc—0.8V)to 0.8V (Note 3) 36 ns
5 CLK2 Rise Time 0.8Vto(Voc~08V) (Note 3) 36 ns
6 A23-A1 Valid Delay CL=50pF 39 4 17 ns
7 A23-A1 Float Delay (Note 1) 42 4 30 ns
8 BHE, BLE, LOCK Valid Delay Cy =50 pF 39 4 17 ns
9 BHE, BLE, LOCK Float Delay (Note 1) 42 4 30 ns
10 M/IO, D/C, W/R, ADS Valid Delay | Cy =50 pF 39 4 17 ns
11 W/R, M/IO, D/C, ADS Float Delay (Note 1) 42 4 30 ns
12 D15~D0 Write Data Valid Delay C_=50pF 39,40 7 23 ns
12a | D15-D0O Write Data Hold Time C_=50pF 41 2 ns
13 D15-DQ Write Data Float Delay (Note 1) 42 4 22 ns
14 HLDA Valid Delay CL=50pF 39 4 22 ns
14f HLDA Float Delay 42 4 22 ns
15 NA Setup Time 38 5 ns
16 NA Hold Time 38 3 ns
19 READY Setup Time 38 9 ns
20 READY Hold Time 38 4 ns
21 D15-D0 Read Data Setup Time 38 7 ns
22 D15-D0 Read Data Hold Time 38 5 ns
23 HOLD Setup Time 38] ns
24 HOLD Hold Time 38 3 ns
25 RESET Setup Time 43 8 ns
26 RESET Hold Time 43 3 ns
27 NMI, INTR Setup Time (Note 2) 38 6 ns
28 NMI, INTR Hold Time (Note 2) 38 6 ns
29 PEREQ, ERROR, BUSY, FLT (Note 2) 38 6 ns
Setup Time
30 PEREQ, ERROR, BUSY, FLT (Note 2) 38 5 ns
Hold Time
Notes:

1. Float condition occurs when maximum output current becomes less than Iy o in magnitude. Float delay is not 100% tested.

2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to

assure recognition within a specific CLK2 period.
3. These are not tested. They are guaranteed by design characterization.

64

Am386SE Microprocessor

PRELIMINARY

AMD

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (33 MHz)

Voc =45V -55V, Tease = 0°C to 100°C

Symbol | Parameter Description Notes Ref. Min. Max. Unit
Figure
Am386SE CPU Half CLK2 freq. 0 33 MHz
1 Am386SE CPU 36 15 ns
2a CLK2 High Time at2Vv 36 6.25 ns
2b CLK2 High Time at3.7v 36 4 ns
3a CLK2 Low Time at2Vv 36 6.25 ns
3b CLK2 Low Time at0.8V 36 45 ns
4 CLK2 Fall Time 37V100.8YV (Note 3) 36 4 ns
5 CLK2 Rise Time 08V1037V (Note 3) 36 4 ns
6 A23-A1 Valid Delay CL=50pF (Note 4) 39 4 15 ns
7 A23~A1 Float Delay (Note 1) 42 4 20 ns
8 BHE, BLE, LOCK Valid Delay C_=50pF 39 4 15 ns
9 BHE, BLE, LOCK Float Delay (Note 1) 42 4 20 ns
10 M/IC, D/C, W/R, ADS Valid Delay | C =50 pF 39 4 15 ns
I} W/R, MAIO, D/C, ADS Float Delay (Note 1) 42 4 20 ns
12 D15-D0 Write Data Valid Delay CL=50pF {Note 4) 39,40 7 23 ns
12a D15-D0 Write Data Hold Time C_ =50pF 41 2 ns
13 D15-D0 Write Data Float Delay (Note 1) 42 4 17 ns
14 HLDA Valid Delay C_ =50pF 39 4 20 ns
14f HLDA Float Delay (Note 1) 42 4 20 ns
15 NA Setup Time 38 5 ns
16 NA Hold Time 38 2 ns
19 READY Setup Time 38 7 ns
20 READY Hold Time 38 4 ns
21 D15-D0 Read Data Setup Time 38 5 ns
22 D15-D0 Read Data Hold Time 38 3 ns
23 HOLD Setup Time 38 9 ns
24 HOLD Hold Time 38 2 ns
25 RESET Setup Time 43 5 ns
26 RESET Hold Time 43 2 ns
27 NMI, INTR Setup Time (Note 2) 38 5 ns
28 NM, INTR Hold Time (Note 2) 38 5 ns
29 |PEREQ, ERROR, BUSY, FLT {Note 2) 38 5 ns
Setup Time
30 PEREQ, ERROR, BUSY, FLT (Note 2) 38 4 ns
Hold Time
Notes:

1. Float condition occurs when maximum output current becomes less than I o in magnitude. Float delay is not 100% tested.
2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to
assure recognition within a specific CLK2 period.
3. These are not tested. They are guaranteed by design characterization.
4. Tested with C; set at 50 pF and derated to support the indicated distribution capacitive load.

Am386SE Microprocessor

N R

65

NAMD PRELIMINARY

t2a
. t2b
Vee- 08V \
CLK2 20V
08V
t4
—
18420A-038
Figure 36. CLK2 Timing (25, 33 MHz)
Am386SE CPU Output i
CL
18420A-039
Figure 37. AC Test Circuit
66 Am386SE Microprocessor

-— —_ —_— —_ —_—

I

PRELIMINARY AMD g\

SWITCHING WAVEFORMS
Tx 02 1 Tx 62 ¢ 1 Tx
et R
1y 120
_ GO
READY I: & () \k
@3 |, e
o [AN
ot | 22
D15-DO S
(Inputs) [\\N \§‘
9 | B30 |
- e
e [Y N
L 15 16

w [N S D N\
—_—— XY T O

18420A-040
Figure 38. Input Setup and Hold Timing
42 1 Tx 02 o1
ta ol M|
o Min Max
BRE B [Valid n NN Vatid n+1
110 —e—> o
- Min Max
“g,ﬂé —“DOS’ [Valid n \m Valid n+1
t6 —»
Min Max
A23-A1 [Valid n §S§\\\ Valid n+1
! t12
Min Max
D15-DO . N .
(Outputs) [Valid n \\\\\\\ Valid n+1
|
HLDA [
18420A-041
Figure 39. Output Valid Delay Timing
Am386SE Microprocessor 67

L L B

&\ avo

PRELIMINARY

SWITCHING WAVEFORMS (continued)

T

o1 o
e | _7[__7[—_J[__ .
" I: Min Min
t12
ots00 [e VK v
Figure 40. Write Data Valid Delay Timing (25 MHz) 184208042
o1 T 02
A N
" [Min M~
t12a
D15-D0 [Valid n >M
18420A—043

Figure 41. Write Data Hold Timing

68

Am386SE Microprocessor

’ I I |

PRELIMINARY

amp

Th TiorT1
$2 $1 $2 91 $2
Clkz [Z__7[__7£—_7
® Min Max 8 Min Max
e[—
LE, __-H_'_———-_
TOCK (High)
m Min Max' 0 " | Min Max
W/R, M/IG, I:
D/C, ADS (High Z)
v Min Max L Min Max
A23—A1[— 11— | T
(High 2Z)
13 Min "l Max 12 Min Max
D15—DO[— — 1t — —|— — —
(High 2)]
t13—Also applies to data float when write
1 4¢ cycle is followed by read or idle.
{14
Min Max "] Min Max
'4 N
noa [i MM
18420A-044
Figure 42. Output Float Delay and HLDA Valid Delay Timing
_ RESET Initialization Sequence .
¢20ro 1 o2o0rdp1 02 61
CLK2 [
126
RESET [K
125 >
18420A-045

Figure 43. RESET Setup and Hold Timing and Internal Phase

Am386SE Microprocessor

69

:l AMD

PRELIMINARY

nom +6 I

nom +3 — —]

Output nom

Valid
Delay

(ns) nom -3

nom —6

nom -9 I I I
50 75 100 125 150

C_ (picofarads)

18420A-046

Figure 44. Typical Output Valid Delay Versus
Load Capacitance at Maximum Operating
Temperature (C =120 pF)

nom +9 T

nom +6

Output nom +3

Valid
Delay

(ns) nom

nom -3

nom —6] |
75 100 125 150

C_ (picofarads)

18420A-047

Figure 45. Typical Output Valid Delay Versus
Load Capacitance at Maximum Operating
Temperature (C =75 pF)

| | |

nom +9 |—

nom +6 |—
Output
Valid nom +3 -~
Delay

(ns)
nom
nom -3 |— [| |
50 75 100 125 150

18420A-048 C\ (picofarads)

Figure 46. Typical Output Valid Delay Versus Load
Capacitance at Maximum Operating
Temperature (C =50 pF)

Rise Time (ns) |
0.8v-20V

P

N
I
]

50 75 100 125 150
C, (picofarads)

|

18420A-049
Figure 47. Typical Output Rise Time Versus Load

Capacitance at Maximum Operating Temperature

DIFFERENCES BETWEEN THE Am386SE
CPU AND THE Am386DE CPU

The following are the major differences between the
Am386SE CPU and the Am386DE CPU:

1. The Am386SE CPU generates byte selects on
BHE and BLE (like the 8086 and 80286) to distin-
guish the upper and lower bytes on its 16-bit data
bus. The Am386DE CPU uses four byte selects,

BE3-BED, to distinguish between the different bytes
on its 32-bit bus.

2. The Am386SE CPU has no bus sizing option. The
Am386DE CPU can select between either a 32-bit
bus or a 16-bit bus by use of the BS16 input. The
Am386SE CPU has a 16-bit bus size.

3. The NA pin operation in the Am386SE CPU is identi-
cal to that of the NA pin on the Am386DE CPU with
one exception: the Am386DE CPUNA pin cannotbe

70 Am386SE Microprocessor

I

I

PRELIMINARY

AMD g\

activated on 16-bit bus cycles (where BS16 is Low in
the Am386DE CPU case), whereas NA can be acti-
vated on any Am386SE CPU bus cycle.

4. The contents of all Am386SE CPU registers at reset
are identical to the contents of the Am386DE CPU
registers at reset, except the DX register. The DX
register contains a component-stepping identifier at
reset, that is,
in Am386DE CPU, after reset

DH = 3 indicates Am386DE CPU
in Am386SE CPU, after reset
DH = 23H indicates Am386SE CPU

5. The Am386DE CPU uses A31 and M/IC as selects
for the math coprocessor. The Am386SE CPU uses
A23 and M/IO as selects.

6. The Am386DE CPU prefetch unit fetches code in
four-byte units. The Am386SE CPU prefetch unit
reads two bytes as one unit (like the 80286). In BS16
mode, the Am386DE CPU takes two consecutive
bus cycles to complete a prefetch request. if there is
a data read or write request after the prefetch starts,
the Am386DE CPU will fetch all four bytes before
addressing the new request.

7. Both Am386DE CPU and Am386SE CPU have the
same logical address space. The only difference is
that the Am386DE CPU has a 32-bit physical
address space and the Am386SE CPU has a 24-bit
physical address space. The Am386SE CPU has a
physical memory address space of up to 16 Mbytes
instead of the 4 Gbytes available to the Am386DE
CPU. Therefore, in Am386SE CPU systems, the
operating system must be aware of this physical
memory limit and should allocate memory for
applications programs within this limit. f an
Am386DE CPU system uses only the lower 16
Mbytes of physical address, then there will be no
extra effort required to migrate Am386DE CPU soft-
ware to the Am386SE CPU. In spite of this difference
in physical address space, the Am386SE CPU and
Am386DE CPU can run the same operating systems
and applications within their respective physical
memory constraints.

8. The Am386SE CPU has an input called FLT which
three-states all bidirectional and output pins, includ-
ing HLDA, when asserted. It is used with ON-Circuit
Emulation (ONCE).

INSTRUCTION SET

This section describes the instruction set. The Instruc-
tion Set Clock Count Summary lists all instructions along
with instruction encoding diagrams and clock counts.
Further details of the instruction encoding are then pro-
vided in the following sections, which completely
describe the encoding structure and the definition of all
fields occurring within instructions.

Am386SE Microprocessor Instruction
Encoding and Clock Count Summary

To calculate elapsed time for an instruction, multiply the
instruction clock count, as listed in the Instruction Set
Clock Count Summary, by the processor clock period
(e.g., 40 ns for the 25-MHz Am386SE CPU). The actual
clock count of an Am386SE CPU program will average
5% more than the calculated clock count due to instruc-
tion sequences which execute faster than they can be
fetched from memory.

instruction Clock Count Assumptions

1. The instruction has been prefetched, decoded, and
is ready for execution.

2. Bus cycles do not require wait states.

3. There are no local bus HOLD requests delaying pro-
cessor access to the bus.

4. No exceptions are detected during instruction
execution.

5. If an effective address is calculated, it does not use
two general register components. One register, scal-
ing and displacement can be used within the clock
counts shown. However, if the effective address cal-
culation uses two general register components, add
1 clock to the clock count shown.

Instruction Clock Count Notation

1. If two clock counts are given, the smaller refers to a
register operand and the larger refers to a memory
operand.

2. n=number of times repeated.

3. m = number of components in the next instruction
executed, where the entire displacement (if any)
counts as one component, the entire immediate data
(if any) counts as one component, and all other bytes
of the instruction and prefix(es) each count as one
component.

Misaligned or 32-Bit Operand Accesses

— |finstructions access a misaligned 16-bit operand or
32-bit operand on even address add:

2 x clocks for read or write
4 x clocks for read and write

~ If instructions access a 32-bit operand on odd
address add:

4 x clocks for read or write
8 x clocks for read and write
Wait States

Wait states add 1 clock per wait state to instruction
execution for each data access.

Am386SE Microprocessor 7

nAMD PRELIMINARY

Am386SE Microprocessor Instruction Set Clock Count Summary

Clock Count Notes
Real Protected Real Protected
Address Address | Address Address

Instruction Format Mode Mode Mode Mode
GENERAL DATA TRANSFER

MOV = Move

Register to Ragister/Memory [1 000100w I mod reg r/m I 22 22" b h
Register/Memory to Register |1 000101w I mod reg m 2/4 2/4* b h
Immediate to Register/Memory |1 100011 ﬂlodooo r/TI immediate data 212 260 b h
Immediate to Register {short form) immediate data 2 2

Memory to Accumulator {short form) full displacement 4* 4" b h
Accumulatar to Memory (short form) full displacement 2" 2* b h
Ragister/Memory to Segment Register |1 0001110 Imod sreg 3 r/mI 2/5 22/23 b hij
Segment Register to Register/Memory I 10001100 I mod sreg m 2/2 2/2 b h
MOVSX = Move with Sign Extension

Register from Register/Memory |o 0001111 |1 011111 wI mod reg r/ml ¥e* e b h
MOVZX = Move with Zero Extension

Register fram Register/Memory IO 000111 Llio 11011 wI mod reg r/im I 6" 3/6* b h
PUSH = Push

Register/Memory l 11111111 ' mod110 r/m ST 7/9* b h
Register (short form) 2 4 b h
Segment Register (ES,CS,SS, or DS) short form} 2 4 b h
Segment Register (ES, CS, S8, DS, FS, or GS) Io 000111 ﬂlo sreg3000 2 4 b h
Immediate immediate data 2 4 b h
PUSHA = Push All 18 el b h
POP = Pop

Ragister/Memory |'1 00011411 |modooo m 517 719 b h
Register (short form) 8 6 b h
Segment Register (ES, CS, SS, or DS) 7 25 b nij
Segment Register (ES, CS, SS, DS, FS, or GS) Io 000111 ﬂl° sreg30 oﬁ 7 25 b hii
POPA = Pop All 24 40 b h
XCHG = Exchange

Register/Mamory with Register [1 00001 1 m"" reg Wm 35 a/5™ b, f 1,h
Register with Accumulator (short form) 3 3

IN = Input From:

Fixed Port [11 1001 0w]portnumber e 6°/26° stm
Variable Port 13 R st.m
* [f CPLSIOPL ** If CPL>IOPL
72 Am386SE Microprocessor

- S _— - — 1

0

|

PRELIMINARY

AMD g

Am386SE Microprocessor Instruction Set Clock Count Summary (continued)

Clock Count Notes
ndtress | Wamoss | Addoss | ‘Addross
Instruction Format WMode Mode | Mode Mode
_ OUT = Output To:
Fixed Port [t 11001 1w]portnumoer | 10° 420 stm
Variable Port 1| sves stm
LEA = Load EA to Register |1 0001101 | mod rag r/mI 2 2
SEGMENT CONTROL
LDS = Load Pointer to DS F 000 1Wd reg r/ﬂ ™ 26*/28" b hij
LES = Load Pointer to ES [t1000100]medreg m] 7 26+/28* b hij
LFS = Load Pointer to FS {oooort1ti]1or10100]modreg wm|f 7 267/28" b hij
LGS = Load Pointer to GS [o o001111]1011010 1Fod reg r/m1 7™ 26*/28* b h, i, j
LSS = Load Pointer to SS lo 00011 il' 0110010 modreg oim 7 264128* b hi
FLAG CONTROL
CLC = Clear Carry Flag 2 2
CLD = Clear Direction Flag 2 2
CLI = Clear Interrupt Enable Flag 8 8 m
CLTS = Ciear Task Switched Flag Ioooo1 111 looooo1 1o—| 5 5 c 1
CMC = Complement Carry Flag 2 2
LAHF = Load AH into Flag 2 2
POPF = Pop Flags 5 5 b hn
PUSHF = Push Flags 4 4 b h
SAHF = Store AH into Flags 3 3
STC = Set Carry Flag 2 2
STD = Set Direction Flag
STl = Set interrupt Enabie Flag 8 8 m
ARITHMETIC
ADD = Add
Register to Register Io 00000dw I mod reg r/m l 2 2
Register to Memory BO 00000 llmod reg r/m_] 7 7 b h
Memory to Register Io 00000 1w I mod reg m I 6" 6" b h
immediate to Register’Memory [to0000swfmedooo wm] immeiate date - o b b
Immediate to Accumulator (short form) immediate data 2 2
ADC = Add with Carry
Register to Register Lo 00100 dil mod reg m I 2 2

*HCPLSIOPL ** If CPL>IOPL

r—————

Am386SE Microprocessor

73

L L R

:l AMD

PRELIMINARY

Am386SE Microprocessor Instruction Set Clock Count Summary (continued)

Clock Count Notes
peu | prowewa| nen | prowmced

Instruction Format Wode Mode | Mode Mode
ADC = Add with Carry (continued)

Register to Memory IO 001000wW | mod reg m | 7 A b h
Memory to Register |0 001001w I mod reg m I 6* 6 b h
Immediate o Register/Memory |1 00000sw | mod 010 r/ml immediate data 27 217 b h
immediate to Accumulator (short form) immediate data 2 2

INC = Increment

Register/Memory l1 111111 w I mod 000 r/m] 2/6* 2/6™ b h
Register (short form) 2 2

SUB = Subtract

Register from Register lo 01010dw | mod reg m 2 2

Register from Memory |O 010100w I mod reg r/m 7 7 b h
Memoary from Register [0 010101 w I mod reg r/m] [6* b h
Immediate from Register/Memory [1 00000sw | mod 101 r/m] immediate data 27 27 b h
Immediate from Accumulator {short form) immediate data 2 2

$BB = Subtract with Borrow

Register from Register IO 00110d Md reg m I 2 2

Register from Memory |0 001100w I mod reg r/m | 7 7 b h
Memoary from Register |0 001101w I mod reg m I €* 6 b h
Immediate from Register/Memory I1 00000sw | mod 011 r/mI immediate data o o7 b h
Immediate from Accumulator {short form) immediate data 2 2

DEC = Decrement

Register/Memory |1 111111w l reg 00 1 m 2/ 2/6 b h
Register (short form) 2 2

CMP = Compare

Register with Register |0 01110dw I mod reg r/mI 2 2

Memory with Register |D 011100w l mod reg r/ml 5 s b h
Register with Memory Io 011101 w | mod reg r/m| 6 6 b h
Immediate with Register/Memory I 100000sw I mod111 ©m | immediate data 25" 25 b h
immediate with Accumulator (short form) immediate data 2 2

NEG = Change Sign [t11t011w]mdors wm] 6" 26° b h
AAA = ASCH Adjust for Add 4 4

*HCPL<IOPL ** If CPL> IOPL
74 Am386SE Microprocessor
L S

I

PRELIMINARY

AMD £\

Am386SE Microprocessor Instruction Set Clock Count Summary (continued)

Clock Count Notes
Real Protectad Real Protected
Address Address | Address Address
. Mede M Mod Mode
Instruction Format ode °
AAS = ASCH Adjust for Subtract 4 4
DAA = Decimal Adjust for Add 00t00111 4 4
DAS = Decimal Adjust for Subtract 4 4
MUL = Multiply (unsigned)
Accumuiator with Register Memory |1 11101 1w I mod 1 0 0 ¢/m
Multiplier —Byte 12-17/15-20" |2-17/15-20" b, d d h
-Word 12-25/15-28" f2-2515-28*| b, d d h
—Doubleword 12-41/17-46" |2-41/17—46"| b.d dh
IMUL = Integer Multiply (signed)
Accumulator with Register Memory |1 111011 w_l mod 1 0 1 r/m
Multiplier -Byte 12-17/15-20" |2-17/15-20" b, d dh
-Word 12-2515-28" |2-25/15-28*| b.d d h
—Doubleword 12-41/17-46" | 2-41/17-46" b, d dh
Register with Register/Memory foooottitftor01 11| modreg umf
Muttiplier —Byte 12-17/15-20" | 2~17/15-20" b.d d, h
-~Word 12-25/15-28" | 2-25/15-28*| b, d d, h
—~Doubleword 12-41/17-46" |2-41/17-46" b, d dh
Ragistar/Memory with Immediate to Register 011010s 1| modreg ,/,-,-,I immediate data
-Word 13-26 13-26/14-27| b, d d, h
—Doubleword 1342 13-42/16-45 b, d d,h
DIV = Divide (unsigned)
Accumulator by Register/Memory l1 111011 wlmod 110 vm
Divisor —Byte 14/17 14/17 b, e e, h
—Word 22/25 22/25 b, e e h
~Doubleword 38/43 38/43 b, e e h
IDiV = integer Divide (signed)
Accumulator by Register/Memory l1 111011w l mod 1 1 1 ,/ml
Divisor —Byte 19/22 19/22 b, e e h
-Word 27/30 27/30 b e e h
—Doubleword 43/48 43/48 b, e e h
AAD = ASCH Adjust for Divide |1 1010101 l00001o10| 19 19
AAM = ASCIl Adjust for Multipty I1 1010100T0000101ol 17 17
CBW = Convert Byte to Word 10011000 3 3
CWD = Convert Word to Double Word 10011001 2 2
LOGIC
Shif/Rotate Instruction
Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR)
RegisterMemory by 1 [1101000 meod T ©om a7 37 b h
* I CPLIOPL ** It CPL>IOPL
Am386SE Microprocessor 75

-

a AMD

PRELIMINARY

Am386SE Microprocessor Instruction Set Clock Count Summary (continued)

Clock Count Notes
Real Protected | Real Protected
B by Addrees
Instruction Format Wode Mode | Mode Mode
LOGIC (continued)
Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR) —{continued)
Registet/Memory by CL f1101001w|med I m| ¥ 7 b h
Register/Memory by | Count {t100000w]|mod TTT umf ¥ ¥r b h
Through Carry (RCL and RCR)
Registor/Memory by 1 l1 101000w Iﬂm T r/mJ 910" 9/10" b h
Register/Memory by CL |1 101001 wbw T r/rrj 910° 910° b h
RegistarMemory by Immediate Count |T1 00000w|mod TTT r/ml m 9o 9o b h
T instruction
000 ROL
001 ROR
010 RCL
on RCR
100 SHL/SAL
101 SHR
SHLD = Shift Left Double m SAR
Ragister/Memory by Immediate lo 0001111 h 010010 OAI mod reg m l " krand 37
Register/Memory by CL Io 0001111]10100101| modreg rImI 3= a7
SHRD = Shift Right Double
Register/Memory by Immediate lo0001111}10101100 [modreg wmjm| ¥ | 7"
Registar/Memory by CL |o 000111 1L D1061101 | modreg v/m—l a7 ar
AND = And
Ragister to Register Io 01000dw I mod rag t/m I 2 2
Register 1o Memory Io 010000 wLmod rag r,ml ™ 7 b h
Memory to Register lo 010001tw I mod reg r/ml & 6 b h
Immediate to Register/Mamory {1000000w]|mod 100 dm | immediate data ar 7 5 h
Immediate to Accumulator {short form) 0010010 w]| Immediate data 2 2
TEST = And Function to Flags, No Result
Register/Memory and Register I 1000010w I mod reg m l 25 25 b h
Immediate Data and Registar/Memory [t111011w]mod 000 rm) immediate data o5° o5 b n
Immediate Data and Accumulator (short form) 1010100 w|immediate data 2 2
OR=0r
Ragister to Register Io 00010dw I mod reg r/m] 2 2
Ragister to Memory Io DO0100W | mod reg r,m"l 7 7 b h
Memory to Register Io 000101w | mod reg r/ml 6 6" b h
*KCPLSIOPL ** If CPL>IOPL
{1} Immediate 8-Bit Data
76 Am386SE Microprocessor
[, e —T1

|

1

PRELIMINARY

AMD g

Am386SE Microprocessor Instruction Set Clock Count Summary (continued)

Clock Count Notes
Real Protected Real Protected

Address | Address | Address | Addrsss
Instruction Format Mode Mode Mode Mode
LOGIC (continued)
Immediate to Register/Memory | 1000000w l mod 001 r/rﬂ immediate data 217 217 b h
Immediate to Accumulator (short form) immediate data 2 2
XOR = Exclusive Or
Register to Register Io 01100dw I mod reg /m | 2 2
Register to Memory |o 011000w | modreg ©m] 7™ ™ b h
Memory to Register |o 011001 w I mod reg r/ml & & b h
immediate to Register/Memory |1 000000w l mod 110 r/rrj immediate data 217 a7 b h
immediate to Accumulator (short form} immediate data 2 2
NOT = Invert Register/Memory l1 11109 1w I mod010 r/m | 2/6™ 2/6" b h
STRING MANIPULATION
CMPS = Compare Byte/Word 10° 10 b h
INS = Input Byta/Word from DX Port 15 9429 b st hm
LODS = Load Byte/Word to AUAX/EAX 5 5 b h
MOVE = Move Byte/Word 7 7 b h
QUTS = Oulput Byta/Word to DX Port 14 828" b st h,m
SCAS = Scan Byta/Word 7 ™ b h
STOS = Store Byte/Word from AL/AX/EX 4 4 b h
XLAT = Translate String 5 5 h
REPEATED STRING MANIPULATION
Repeated by Count in CX or ECX
REPE CMPS = Compare String (Find non-match) I1 1110011 I 1010011 wl 549n** 5+9n"* b h
REPNE CMPS = Compara String (Find rmatch) |'1 1110010 l1 010011 wl 5+49n** 5+9n** b h
REP INS = input String |1 1110010 lo 110110 WJ 13+6n* 2774;56?"{. 6 sit,h,m
REP LODS = Load String [t1110010[1010110w] se6n* | 546n" b h
REP MOVS = Move String [r1110010]1010010w| 7+4nt | T+4ne b h
REP OUTS = Output String [t1110010]o110111w] 12+5n* 2:55':./. S
REPE SCAS = Scan String (Find non-AL/AX/EAX) P 1110011 I1 010111 wl 5+8n* 5+8n* b h
REPNE SCAS = Scan String (Find AUAX/EAX) l1 1110010 I 1010111 WJ 5+Bn* 5+8n* b h
REP STOS = Store String |1 1110 oil 1010101 WJ 5+5n* 545n* b h

*HCPL<IOPL ** If CPL>IOPL

Am386SE Microprocessor

77

mn-

&\ Avo PRELIMINARY

Am386SE Microprocessor Instruction Set Clock Count Summary (continued)

Clock Count Notes
Real Protected Real Protected
Address Address Address Address
Instruction Format WMode Wode Mods Mode
BIT MANIPULATION
BSF = Scan Bit Forward I00001111I101111oolm0dreg v/ml(1) 10+3n* | 10+3n° b h
BSR = Scan Bit Reverse Ioooo1111l1o111101 modreg t/m | 10+3n" | 10430 b h
BT = Test Bit
Register/Memory, Immediate 0000111 1J1 011101 oJTnoa 100 om|m| w6 6 b h
Register/Memory, Register l?o 001111]1010001 Jm‘” reg m l A an2 b h
BTC = Test Bit and Complement
Registsr/Mamory, Immediate [ooooti1t]rot11010fmadti1 um|m| &8 6/8* b h
Registar’Memory, Register Io 0001111 I 10111011 ‘ modreg ©m ‘ 6/13° 6/13* b h
BTR = Test Bit and Reset
Register/Memory, Immediate [o 0001111] 1011101 o| mod110 rm] o] o8 e/g* b h
Register/Memory, Register [o 0001111 [1 0110011 [mod reg tm [813 CAky b h
BTS = Test Bit and Set
Register/Memory, Immediate F) 000111 \F 011101 OTmod 101 im|of e /8 b h
Register/Memory, Register Joooor111]i0t01011]medreg wm | 613" | 61 b h
CONTROL TRANSFER
CALL = Call
Direct Within Segment 11101000 | tulldisplacement Tem 9+m* b f
Register/Memory 7em/ | 9+ms b h ¢
indirect Within Segment |1 1111111 Imod01 0 m 10+m* | 12em
Direct Intersegment 10011010 |unsigned full offset, selector 17+m | 424m* b Bk
Protected Mode Only (Direct Intersagment)
Via Call Gate to Same Privilege Level 64+ m hikr
Via Call Gate to Difterent Privilege Level (No Parameters) 98 +m h ik r
Via Call Gate to Different Privilege Level (x Parameters) 106+8x+m hik
From 80286 Task to 80286 TSS 285 h ikt
From 80286 Task to Am386SE CPU TSS 310 hjkr
From Am386SE CPU Task to 80286 TSS 285 hjkr
From Am386SE CPU Task to Am386SE CPU 7SS 392 hj kr
Indirect Intersegment 30+m 46+m b hjlkr
11111111]mod011 ¢/m
Protected Mode Only {Indirect Intersegment)
Via Call Gate to Same Privilege Level 68+m hj k1
Via Call Gate to Different Privilege Lovel (No Parameters) 102 +m h ikt
Via Call Gate to Different Privilege Level (x Parameters) 110+8x+m bkt
From 80286 Task to 80286 TSS hjkr
From 80286 Task to Am386SE CPU TSS hikr
From Am3B6SE CPU Task to 80286 TSS hjkr
From Am386SE CPU Task to Am386SE CPU TSS 399 hik

*I{CPLSIOPL ** If CPL>IOPL

(1) Immediate 8-Bit Data

78 Am386SE Microprocessor

e

PRELIMINARY aMD g\
Am386SE Microprocessor Instruction Set Clock Count Summary (continued)

Clock Count Notes
Real Protected Real Protected

Address Address Address Address
Instruction Format Mode Mode Mode Mode
CONTROL TRANSFER (continued)
JMP = Unconditional Jump
Short | 1110101 ﬂi—bi(dispincememl 7+m | 7+m r
Direct within Segment fult displacement 7+m 7+m r
Regi,f";’,’:cfvmvmn Segmert [frr11111moato0 um] Symi Sam b e

Direct Intersegment 11101010 | unsigned full ofiset, selector 16+m | 31+m bk

Protected Mode Only {Direct Intersegment)

Via Call Gate to Same Privilege Level §3+m hj ke
From 80286 Task to B0286 TSS bkt
From 80286 Task to Am386SE CPU TSS hijkr
From Am386SE CPU Task to 80286 TSS hjik
From Am386SE CPU Task to Am386SE CPU TSS hikr
17+m 3M+m b hjkr

Indirect Intersegment 1911111 L[mod 101 ,/ﬂ
Protected Mode Only (Indirect Intersegrmant) 49 +m bk
Via Call Gate to Same Privilege Level hj k. r
From 80286 Task to 80286 TSS hj ks
From 80286 Task to Am386SE CPU TSS hjkr
From Am386SE CPU Task to 80286 TSS 328 hj Kk r
From Am386SE CPU Task to Am386SE CPU TSS hjkr

RET = Return from Calt

Within Segment 12+m b g hr
11000011

Within Segment Adding Immediate to SP 12+4m b ghr
|1 1000010 | 16-bit disptacement |

Intersagment 3B+m b g.hijkr
11001011
Intersegment Adding Immediate to SP 36+m b ghikr
[t 1001010] ebrdspiacement |
Protected Mode Only (RET}: to Different Privilege Levet
Intersegment 72 hjkr
Intersegment Adding Immediate to SP 72 hjkr
CONDITIONAL JUMPS (Note: Times are Jump “Taken or Not Taken")
JO = Jump on Overfiow
8-bit Displacement 7+mor3|7+mor3 r
{o 1110000 |ebidsplacement |
Full Displacement 7 +mor3|7+mor3 r
Joooot1r11]s ooooooL] ful displacement
JNO = Jump on Not Overflow
8-bit Displacement 7+mor3|7+mor3 4
lo 1110001 Ie-bndisplacemsm l
Full Displacement 7+mor3|7+mor3 r
{oooo0t111]1000000+ | tuidisplacement
* It CPLSIOPL ** If CPL>IOPL
Am386SE Microprocessor 79

n AMD

PRELIMINARY

Am386SE Microprocessor Instruction Set Clock Count Summary (continued)

Instruction Format

Clock Count Notes
Real Protected Real Protected
Address Address Address | Addreas
Made Mode Mode Mode

CONDITIONAL JUMPS (continued)

JB/INAE = Jump on Below/Not Above or Equal

8-bit Displacement Lo 1110010 l&bhdisplacemem I
Full Displacement [0000111q1ooooo1o]
JNB/JAE = Jump on Not Below/Above or Equai

8-bit Displacement Lo 1110011 lB-bitdisplacement J
Full Displacement Looooanoooon J
JE/NZ = Jump on EqualZero

8-bit Displacement Io 11101 oﬂ 8-bit displacement I
Full Disptacement [oooo1111|1oooo1oo I
JNE/AINZ = Jump on Not EquaiMNot Zero

8-bit Dispfacement [o 1110101 Ia-bitdisplacemem]
Full Displacement Ioooo1111|100001o1 I
JBE/ANA = Jump on Below or Equal/Not Above

8-bit Displacement Io 1110110 lB—bitdispIacemem l
Full Displacement Ioooo1111|1oooo11o|

JNBE/AA = Jump on Not Below or Equal/Above

8-bit Displacement |01 11

111 Is-bitdisplacementj

Full Displacement lo 000

111I10000111|

JS = Jump on Sign

8-bit Displacement lo 111

000 I B-bit displacement I

Full Displacement Fo 00

111I10001000I

JNS = Jump on Not Sign

8-bit Displacement ﬁ 111

001 Iﬂ-bitdisplacemenl I

Full Displacement ﬁo 00

11110001001 |

JP/JPE = Jump on Parity/Parity Even

8-bit Displacement Io 111

010 I8~bitdisplacemem I

Full Displacement |o 000

11|1ooc1o1o|

JNP/JPO = Jump on Not Parity/Parity Odd

full displacement

full displacement

full displacement

{ull displacement

full displacement

full displacement

full displacement

full disptacement

{ull displacement

74mord | 7+mor3

7+mor3 | 7+mord

7+mord3 | 7+mor3

7+mor3 | 7+mor3

7+mord | 7+mor3

7+mord | 7+mor3

7+mor3 | 7+mord

7+mord | 7+mor3

7+mor3 | 7+mor3

7+mor3 | 7+mor3

7+mor3 | 7+mor3

7+mor3 | 7+mord

7+mor3 | 7+mor3

7+mor3 | 7+mord

7+mord | 7+mor3

7+mor3 | 7+mor3

7+mor3 | T+mor3

7+mor3 [7+mor3

8-bit Displacement IO 1111011] 8-bit displacement—l 7+mor3 | 7+mor3 r
Full Displacement [0 0001111[10001011 J full displacement | 7 *mord [7+mor3 r
80 Am386SE Microprocessor

0

amp o\

PRELIMINARY
Am386SE Microprocessor Instruction Set Clock Count Summary (continued)
Clock Count Notes
Real Protected Real Protected
Addrass Address Address | Address
Instruction Format Mode Mode Mode Mode
CONDITIONAL JUMPS (continued)
JUINGE = Jump on Less/Not Greater or Equal
8-bit Displacement |0 1111100 | 8-bit displacemant l 7+mor3 | 7+mor3 r
Full Displacement |oooo1 111 |1ooo 1100 l full displacement | 7+mor3 | 7+mor3d r
JNLJGE = Jump on Net Less/Greater or Equal
8-bit Displacement [o 1111101]ebidisplacement | 7+mor3 | 7+mord r
Full Displacement |oooo1 111 110001 101 | full displacement | 7+mor3 | 7+mora r
JLEUNG = Jump on Less or Equal/Not Greater
B-bit Displacement IO 1111110 |8—bitdisplacemant | 7+mor3 | 7+mor3 T
Full Displacement focoorr11]10001110 | tndispiacement | 7+mor3 | 74mora r
JNLE/JG = Jump on Not Less or Equal/Greater
8-bit Displacement Io 1111111 IS-bitdispIacement | 7+mor3 | 7+mor3 ¥
Full Displacement [oooor1r1]10001111 | widisplacement |7+mor3 | 74mor3 r
JCXZ = Jump on CX Zero* 11 1100011 l 8-bit displacement I 9+morsS | 9+4mor$ r
JECXZ = Jump on ECX Zero |1 1100011 | 8-bit displacement I 9+mors | 9+mors ’
LOOP = Loop CX Times [11100010] ebidisplacement | nem Hem '
LOOPZILOOPE = Loop with ZerwEqual [1 110000 1 | s-tit displacement | M+m f+m r
LOOPNZILOOPNE = Loop whileNotZero [11100 0 0 0 | -bitdisplacement | M+em Hem '
CONDITIONAL BYTE SET (Note: Times Are Register/Memory)
SETO = Set Byte on Overflow
To Register/Memory |00001111|10010000|mod000r/m | 45 4s5° h
SETNO = Set Byte on Not Overflow
To Register/Memory I00001111|10010001Imod000r/m | 45t 45 h
SETB/SETNAE = Set Byte on Below/Not Above or Equal
To RegisterMemory Ioooon11|1oo1oo1o|mod000r/m | 45 4/5° h
SETNE = Set Byte on Not Below/Above or Equal
To Register/Memory |00001111|10010011Imod000r/m] 45 45 h
SETE/SETZ = Set Byte on EqualZero
To Register/Memory {ocoot111]10010100[med 000 m | 45 45" h
SETNE/SETNZ = Set Byte on Not Equal/Not Zero
To Register/Memory [oooo1r11]10010101 mod 000 wm | a5 45 h

* Address Size Prefix differentiates JCXZ from JECXZ

Am386SE Microprocessor

&\ avp PRELIMINARY
Am386SE Microprocessor Instruction Set Clock Count Summary (continued)

Clock Count Notes
Real Protected Real Protacted
Addr Address

instruction Format Mode Mode Wode >
CONDITIONAL BYTE SET {continued)
SETBE/SETNA = Set Byte on Below or Equal/Not Above
To Register/Memory |oooo1111 |10010110|mod000 t/m | 45 45 h
SETNBE/SETA = Set Byte on Not Bslow or Equal/Above
To Register/Memmory |oooo111111oo10111 mod0Q0 tm | 45 45 h
SETS = Set Byte on Sign
To Register/Mermory |oooo1111 10011000Imod000 r/rnJ 4/5° us h
SETNS = Set Byte on Not Sign
To Register/Memory {oooo1111|1oo11oo1|modooo r/mJ 45 45 h
SETP/SETPE = Set Byte on Parlty/Parity Even
To Register’Memory IDOOO1111I10011010Imod000 rim I 45 45 h
SETNP/SETPO = Set Byte on Not Parity/Parity Odd
To Register/Memory [0000ti 111001101 1] mosoo0 wm | 45 45 h
SETL/SETNGE = Sat Byte on Less/Not Greater or Equal
To Register/Memory [oooo1111|1oo111oolmodooo rim] 45 45" h
SETNL/SETGE = Set Byte on Not Less/Greater or Equal
To Reglster/Memory [o 0001111 111 1111 oTl mod000 ¢m ¥s 4/5° h
SETLE/SETNG = Set Byte on Less or Equal/Not Greater
To RegisterMemory [oooorti1Troor1110]medo00 um | 45 45 h
SETNLE/SETQ = Set Byte on Not Less or Equal/Greater
To RagisterMemory |00001111l10011111lmod000 v/m | 45" 45 h
ENTER = Enter Procedure |1 1001000] 16-bit displacement, 8-bit lavel l

L=0 10 10 b h

L=1 14 14 b h

L1 17+8-1) 1748000] b h
LEAVE = Leave Procedure

11001001 4 4 b h
INTERRUPT INSTRUCTIONS
INT = Interrupt:
Type Specified
I11001101I1ype £y b
Type 3
11001100 3 b

INTO = Interrupt 4 if Overfiow Flag Set

HOF =1 11001110 " .

OF =0) s o :

"It CPLSIOPL ** If CPL>IOPL

82 Am386SE Microprocessor

PRELIMINARY AMD g\
Am386SE Microprocessor Instruction Set Clock Count Summary (continued)

Ciock Count Notes
Real Protected Real Protected
Address Address Address | Address
Instruction Format Mode Mode Mode Mode
INTERRUPT INSTRUCTIONS (continued)
INT = Interrupt:
Type Specified
Type 3
Bound = Interrupt 5 If Detected Value Out of Range |0 1 1000 1 0 | mod reg m
If Out of Range 44 b.e e.g.hjkr
If In Range 10 10 b, e eg.hikr
Protected Mode Only (INT)
INT: Type Specified
Via Interrupt or Trap Gate to Same Privilege Level .
Via Interrupt or Trap Gate to Different Privilege Level n b kr
From 80286 Task to 80286 TSS via Task Gate " Gkt
From 80286 Task to Am386SE CPU TSS via Task Gate 438 gk ot
From Am3BBSE CPU Task to 80286 TSS via Task Gate 465 ks
From Am386SE CPU Task to Am386SE CPU TSS via Task Gate 440 Gk
467 gk r
INT: Type 3
Via Interrupt or Trap Gate to Same Privilege Level .
Via Interrupt or Trap Gate to Different Privilege Level 71 g] kr
From 80286 Task to 80286 TSS via Task Gate 5% bk
From 80286 Task to AM386SE GPU TSS via Task Gate 382 gdkr
From Am386SE CPU Task to 80286 TSS via Task Gate 409 G-l K
From Am388SE CPU Task to Am386SE CPU TSS via Task Gate :?4 S t ‘
1 gikr
INTO
Via Interrupt or Trap Gate to Same Privilege Level .
Via Interrupt or Trap Gate to Different Privilege Level 7 9]_' r
From 80286 Task to 80286 TSS via Task Gate " ghkr
From 80286 Task to Am386SE CPU TSS via Task Gate 384 g.pkr
From Am386SE CPU Task to 80286 TSS via Task Gate 328 gk
From Am386SE CPU Task to Am386SE CPU TSS via Task Gate Am386DE gkt
413 gikr
BOUND
Via interrupt or Trap Gate to Same Privilege Level .
Via interrupt or Trap Gate to Ditferent Privilage Level n 9] o
From 80286 Task to 80286 TSS via Task Gate " o j K
From 80286 Task to Am386SE CPU TSS via Task Gate 358 9:] ks
388 gkt
Am386SE Microprocessor 83

n AMD

PRELIMINARY

Am386SE Microprocessor Instruction Set Clock Count Summary (continued)

Clock Count Notes
Real Protected Real Protected
Address Add

Instruction Format Mode WMode Mode | Mode
INTERRUPT INSTRUCTIONS (continued)

BOUND (continued)

From Am386SE CPU Task 1o 80286 TSS via Task Gate 368 9. bk

From Am386SE CPU Task to Am386SE CPU TSS via Task Gate 308 9.0k r
INTERRUPT RETURN
IRET = interrupt Return 11001111 24 g.h.j.kr
Protected Mode Only (JRET)

Via Interrupt or Trap Gate to Same Privilege Level (within Task) 42 a.hjkr

Via Interrupt or Trap Gate to Different Privilege Level (within Task) 86 ghijkr

From B0286 Task to 80286 TSS 285 hj. i r

From 80286 Task to Am386SE CPU TSS 318 hjkr

From Am386SE CPU Task to 80286 TSS 328 hijkr

From Am3B6SE CPU Task to Am386SE CPU TSS 377 h kT
PROCESSOR CONTROL
MOV = Move To and From C. /Debug/Test Regi
CRO/CR2/CR3 from Register |o 0001111 IQ 010001 ol 11 aee reg | 10/4/5 10/4/5 |
Register from CR3-CRO [00o01111]ooro0000f1 1 ecereg | 5 8 !
DR3-DAO from Register foooor1t1foot100011]11eeareg | 22 22 !
DR7~DRG from Register [ooo0t111Joor000t1f11e00reg | 16 16 !
Register from DR7-DR6 Ioooo1111]oo1oooo1|1 1 000 rog | 14 14 !
Register from DR3-DRO foooori11foot100001]1 1 eeereg | 2 2 !
NOP = No Operation 10010000 3 3 !
WAIT = Wait until BUSY pin is negated 10011011 8 6]
PROCESSOR EXTENSION INSTRUCTIONS

Ses 3875X
Processor Extension Escape [rio1r77TfmdLLL vm Data sheat .
for clock
TTT and LLL bits are op-code information for coprocessor.
PREFIX BYTES Po o counts
Address Size Prefix 01100111 0 0
84 Am386SE Microprocessor

-

M

M

1

PRELIMINARY

AMD g

Am386SE Microprocessor Instruction Set Clock Count Summary (continued)

Clock Count Notes
Real Protected Real Protected
Address Address Address | Address
Instruction Format Mode Mode Mode Mode
PREFIX BYTES (continued)
LOCK = Bus Lock Prafix 11110000 0 0 m
Operand Size Prefix 01100110 0 0
Segment Override Prefix
cs 00101110 0 0
DS 00111110 0 0
ES 00100110 0 0
FS 01100100 0 0
GS 01100101 0 0
ss 00110110 0 0
PROTECTION CONTROL
ARPL = Adjust Requested Privilege Level
From Register/Memory Io 1100011 Imod reg r/ml N/A 20/21* a h
LAR = Load Access Rights
From Register/Memory |0 0001111 Io 0000010 I mod reg m | N/A 15/16* a g.hjp
LGDT = Load Giobal Descriptor
Table Register feooo1111]o0000001]mod o1 0wm| " w bc ht
LIDT = Load Interrupt Descriptor
Table Register {o00001111]00000001]|modo11 um| " " b.c h!
LLDT = Load Local Dascriptor
Table Register to Register/Memory [o0001111]ooo00000]mosotowm] NA | 2024 a gl
LMSW = Load Machine Status Word
From Register/Mamary [oocoi111foooo0a0t1]mod 1 10wm] 013 | 1013 b.e hl
LSL = Load Segment Limit
From Register/Memory |00001111I00000011|modreg r/ml
Byte-Granular Limit NA 20/21° a hi.p
Page-Granuiar Limit NA 25/06" a : h' : P
LTR = Load Task Register
From Register/Memory [o0001111Joo000000]mod oot vm] N/A 237" a ghil
SGDT = Store Global Descriptor
Tablo Register [ooooti11Jo0000001]med 000 im] o s b ¢ h
SIDT = Store Interrupt Descriptor
Table Register [o0001i11Jooo00001]modootum] g 9 b.c h
*fCPL<IOPL ** IfCPL> IOPL
Am386SE Microprocessor 85

AT ™

&\ AvD PRELIMINARY

Am386SE Microprocessor Instruction Set Clock Count Summary (continued)

Clack Count Notes

Real Protected Real Protected
Address Address Address | Address

Instruction Format Mode Mode Mode Mode

PROTECTION CONTROL (continued)

SLDT = Store Local Descriptor Table Register

STR = Store Task Register

VERR = Verify Read Access

*IfCPL<OPL **IfCPL> OPL

To Register/Memory |oooo 1111 Ioooooooo] mod 000 r/ml NA 2/2* a h

SMSW = Store Machine Status Word Iooo 01111 Ioooo 0001 | mod 100 r/mI 242+ 22 b,c h

To Register/Memory |oooo1111|oooooooo|modoo1 r/m] NA 2/ a h

RegisteriMemory |ooo 01111]o 0000 ooolmomoo r/ml NA 1011 a g hip

VERW = Verify Write Access |oooo 1111 Ioooo oooo] mod 101 r/ml N/A 18/16* a g.hip

Instruction Notes for Instruction Set Summary

Notes a through c apply to Real Address Mode only:

a.
b.

c.

This is a Protected Mode instruction. Attempted execution in Real Mode wilt result in Exception 6 (invalid op-code).

Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maxi-
mumCS, DS, ES, FS, or GS limit (FFFFH). Exception 12 fault (stack segmentlimit violation or not present) will occur in Real Mode if an operand
referance is made that partially or fully extends beyond the maximum S8 limit.

This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected Mode.

Notes d through g apply to Real Address Mode and Protected Address Mode:

d.

e.
f.
g

The Am386SE CPU uses an early-out multiply algorithm. The actual number of clocks depends on the position of the most significant bit in the
operand (multiplier).
Clock counts given are minimum to maximum. To calculate actual clocks use the foliowing formula:
Actual Clock = if m < > 0, then max ([loga Imi}, 3) + b clocks;
=if m=0, then 3 + b clocks
In this formula, mis the multiplier, and
b = 9 for register to register;
b = 12 for memory to register;
b = 10 for register with immediate to register;
b = t1 for memory with immediate to register.
An exception may occur, depending on the value of the operand.
LOCK is automatically asserted, regardiess of the presence or absence of the LOCK prefix.

LOCK is asserted during descriptor table accesses.

Notes h through r apply to Protected Address Mode only:

h. Exception 13faultwill occur if the memory operandin CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access
rights violation. If a stack limit is violated, an Exception 12 occurs.

i. Forsegmentloadoperations, the CPL, RPL, and DPL mustagree with the privilege rulesto avoid an Exception 13 fault. The segment's descrip-
tor must indicate “present” or Exception 11 (CS, DS, ES, FS, GS not present). If the SS register is loaded and a stack segment not present is
detected, an Exception 12 occurs.

j. Allsegment descriptor accesses inthe GDT or LDT made by this instruction will automatically assert LOCK to maintain descriptor integrity in
muitiprocessor systems.

k. JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an Exception 13, if an applicable privilege rule is
violated.

I. An Exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).

m. An Exception 13 fault occurs if CPL is greater than IOPL.

n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL field of the flag register is updated only if CPL = 0.

o. The PE bit of the MSW (CRO0) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit.

p. Any violation of privilege rules as applied to the selector operand does not cause a protection exception; rather, the zero flag is cleared.

q. If the coprocessor's memory operand violates a segment limit or segment access rights, an Exception 13 fault will occur before the ESC
instruction is executed. An Exception 12 fault will occur if the stack limit is violated by the operand’s starting address.

. The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an Exception 13 fault will occur.

s/t. The instruction will execute in s clocks if CPL < IOPL. If CPL>IOPL, the instruction will take t clock.

86 Am386SE Microprocessor

I

PRELIMI

NARY AMD g\

Instruction Encoding

Overview

All instruction encodings are subsets of the general
instruction format shown in the Am386SE Microproces-
sor Instruction Set Clock Count Summary Table (pages
72 thru 86). Instructions consist of one or two primary
op-code bytes, possibly an address specifier consisting
of the mod r/m byte and scaled index byte, a displace-
ment if required, and an immediate data field if required.

Within the primary op-code(s), smaller encoding fields
may be defined. These fields vary according to the class
of operation. The fields define such information as direc-
tion of the operation, size of the displacements, register
encoding, or sign extension.

Almost all instructions referring to an operand in
memory have an addressing mode byte following the
primary op-code byte(s). This byte (mod r/m) specifies
the address mode to be used. Certain encodings of the
mod r/m byte indicate a second addressing byte (scale-
index-base byte) follows the mod r/m byte to fully specify
the addressing mode.

Addressing modes can include a displacement immedi-
ately following the mod r/m byte, or scaled index byte. If
a displacement is present, the possible sizes are 8, 16,
or 32 bits.

If the instruction specifies an immediate operand, the
immediate operand follows any displacement bytes.
The immediate operand, if specified, is always the last
field of the instruction.

Figure 48 illustrates several of the fields that can appear
in an instruction, such as the mod field and the r/m field,

but Figure 48 does not show all fields. Several smaller
fields also appear in certain instructions, sometimes
within the op-code bytes themselves. Table 19 is a com-
plete list of all fields appearing in the Instruction Set. Fur-
ther ahead, following Table 19, are detailed tables for
each field.

32-Bit Extensions of the Instruction Set

With the Am386SE CPU, the 8086/80186/80286
Instruction Set is extended in two orthogonal directions:
32-bit forms of all 16-bit instructions are added to sup-
port the 32-bit data types; and, 32-bit addressing modes
are made available for all instructions referencing
memory. This orthogonal instruction set extension is
accomplished having a Default (D) bit in the code seg-
ment descriptor, and by having 2 prefixes to the instruc-
tion set.

Whether the instruction defaults to operations of 16 bits
or 32 bits depends on the setting of the D bitin the code
segment descriptor, which gives the default length
(either 32 bits or 16 bits) for both operands and effective
addresses, when executing that code segment. In the
Real Address Mode, no code segment descriptors are
used, but a D value of 0 is assumed internally by the
Am386SE CPU when operating in this mode (for 16-bit
default sizes compatible with the 8086/80186/80286).

Two prefixes, the Operand Size Prefix and the Effective
Address Size Prefix, allow overriding individually the
Default selection of operand size and effective address
size. These prefixes may precede any op-code bytes
and affect only the instruction they precede. If
necessary, one or both of the prefixes may be placed

Table 19. Fields Within Instructions

[~ Field Description Number of Bits
Name

w Specifies if data is byte or full size (full size is either 16 or 32 bits) 1

d Specifies direction of data operation 1

s Specifies it an immediate data field must be sign-extended 1

reg General Register Specifier 3

mod r/m Address Mode Specifier (effective address can be a General Register) 2 for mod; 3 for r/m
ss Scale Factor for Scaled Index Address Mode 2

index General Register to be used as Index Register 3

base General Register to be used as Base Register 3

sreg2 Segment Register Specifier for CS, SS, DS and ES 2

sreg3 Segment Register Specifier for CS, SS, DS, ES, FS, and GS 3

tttn For Conditional Instructions, specifies a condition asserted or a condition negated 4

Note: Table 19 shows encoding of individual instructions.

TTTTTITTT[TTTTTTTTmod TTT /m]ss

index base I d32 |16| 8 'none data32l 16 I 8 l none

J [V 4 9\7653201\765320,\ g y
v v A4 v Y
op-code mod r/m s-i-b address displacement immediate data
{one or two bytes) “ byte byte , (4,2, 1 bytes, or none) (4, 2, 1 bytes, or none)

(T represents an op-cade bit)

register and address mode specifier 18420A-050
Figure 48. General Instruction Format
Am386SE Microprocessor 87

i

a AMD

PRELIMINARY

before the op-code bytes. The presence of the Operand
Size Prefix and the Effective Address Prefix will toggle
the operand size or the effective address size, respec-
tively, to the value opposite from the Default setting. For
example, if the default operand size is for 32-bit data
operations, then presence of the Operand Size Prefix
toggles the instruction to 16-bit data operation. As
another example, if the default effective address size
is16 bits, presence of the Effective Address Size prefix
toggles the instruction to use 32-bit effective address
computations.

These 32-bit extensions are available in all modes,
including the Real Address Mode. In these modes the
defaultis always 16 bits, so prefixes are needed to spec-
ify 32-bit operands or addresses. For instructions with
more than one prefix, the order of prefixes is
unimportant.

Unless specified otherwise, instructions with 8-bit and
16-bit operands do not affect the contents of the high
order of the extended registers.

Encoding of Instruction Fields

Within the instruction are several fields indicating regis-
ter selection, addressing mode and so on. The exact
encodings of these fields are defined immediately
ahead.

Encoding of Operand Length (w) Field

For any given instruction performing a data operation,
the instruction is executing as a 32-bit operation or a
16-bit operation. Within the constraints of the operation
size, the w field encodes the operand size as either one
byte or the full operation size, as shown in the table
below.

Encoding of reg Field When w Field is
Present in Instruction

Register Specified by reg Field
During 16-Bit Data Operations
Function of w Field

reg (when w = 0) {(whenw=1)
000 AL AX
001 CL CcX
010 DL DX
oM BL BX
100 AH SP
101 CH BP
110 DH SI
m BH DI

Register Specified by reg Field
During 32-Bit Data Operations

Function of w Field

reg (when w = 0) (whenw =1)
000 AL EAX
001 CL ECX
010 DL EDX
o1 BL EBX
100 AH ESP
101 CH EBP
110 DH ESI

11 BH EDI

Operand Size Operand Size
During 16-Bit During 32-Bit
w Field Data Operations | Data Operations
0 8 Bits 8 Bits
1 16 Bits 32 Bits

Encoding of the General Register (reg) Field

Encoding of the Segment Register (sreg) Field

The sreg field in certain instructions is a 2-bit field, allow-
ing one of the four 80286 segment registers to be speci-
fied. The sreg field in other instructions is a 3-bit field,
allowing the Am386SE CPU FS and GS segment regis-
ters to be specified.

2-Bit sreg2 Field

The general register is specified by the reg field, which
may appear in the primary op-code bytes, or as the reg
field of the mod r/m byte, or as the i/m field of the mod

2-Bit sreg2 Field Segment Register Selected

r/m byte.

Encoding of reg Field When w Field is not
Present in Instruction

00 ES
01 Ccs
10 88
1 DS

3-Bit sreg3 Field

3-Bit sreg3 Field Segment Register Selected

Register Selected | Register Selected
During 16-Bit During 32-Bit
reg Field Data Operations | Data Operations
000 AX EAX
001 CX ECX
010 DX EDX
o11 BX EBX
100 SP ESP
101 BP EBP
101 Sl ESI
101 Di EDI

000 ES
001 CS
010 88
011 DS
100 FS
101 GS
110 do not use
1 do not use

88

Am386SE Microprocessor

TTTTY

I

I\

PRELIMINARY

AMD g\

Encoding of Address Mode

Except for special instructions, such as PUSH or POP,
where the addressing mode is predetermined, the
addressing mode for the current instruction is specified
by addressing bytes following the primary op-code. The
primary addressing byte is the mod r/m byte, and a
second byte of addressing information, the s-i-b (scale-
index-base) byte, can be specified.

The s-i-b byte is specified when using 32-bit addressing
mode, the mod r/m byte has r/m = 100, and mod = 00,
01, or 10. When the s-i-b byte is present, the 32-bit
addressing mode is a function of the mod, ss, index, and
base fields.

The primary addressing byte, the mod ¢/m byte,
also contains three bits (shown as TTT in Figure 48)

sometimes used as an extension of the primary op-
code. The three bits, however, may also be used as a
register field (reg).

When calculating an effective address, either 16-bit
addressing or 32-bit addressing is used. 16-bit addres-
sing uses 16-bit address components to calculate the
effective address, while 32-bit addressing uses 32-bit
address components to calculate the effective address.
When 16-bit addressing is used, the mod r/m byte is
interpreted as a 16-bit addressing mode specifier. When
32-bit addressing is used, the mod r/m byte is inter-
preted as a 32-bit addressing mode specifier.

Tables on the following pages define alf encodings of all
16-bit addressing modes and 32-bit addressing modes.

Encoding of 16-Bit Address Mode with mod r/m Byte

mod r/m Effective Address Register Specified by r/m
During 16-Bit Data Operations
gg gg? 32; {gi : g:]] Function of w Field
00 010 SS: [BP + Si] mod r/m (when w = 0) (when w = 1)
00 of1 DS: [BP +DI] 11 000 AL AX
00 100 Ds: [81) 11 001 CL CX
0 101 Ds: [D1] 11 010 DL DX
00 110 DS: d16 11 01 BL BX
00 1M Ds: {BX] 1 100 AH sp
11 101 CH BP
01 000 DS:{BX + Sl + d8g] 1 110 DH Sl
01 001 DS:(BX + DI + d8) 11 1M BH Dt
01 010 SS:[BP + Si +d8)]
8: ?(1)(1) ggigr:d[;l] + ol Register §pecified by rlr.n
i During 32-Bit Data Operations
01 101 DS:[Dl + d8)
ot 110 SS:[BP + d8] Function of w Field
o1 i DS:[BX + d8] mod r/m (when w = 0) (whenw=1)
11 000 AL EAX
mod r/m Effective Address 1 oo cL ECX
11 010 DL EDX
10 000 DS:[BX + Sl + d16] 1 0N BL EBX
10 001 DS:[BX + DI + d16] 11 100 AH ESP
10 010 SS:[BP + Sl + d16] 1 101 CH EBP
10 o1 SS:[BP + Sl + d16] 1 110 DH ESI
10 100 DS:[St + d16] 11 111 BH EDI
10 101 DS:[DI + d16]
10 110 SS:[BP + d16]
10 1M DS:[BX + d16]
11 000 Register—See Below
11 001 Register—See Below
11 010 Register—See Below
11 011 Register—See Below
11 100 Register—See Below
11 101 Register—See Below
1 110 Register—See Below
LA A Register—See Below
Am386SE Microprocessor 89

| | B

n AMD

PRELIMINARY

Encoding of 32-Bit Address Mode with mod r/m Byte (no s-i-b byte present)

mod r/m Effective Address mod r/m Effective Address

00 000 DS:[EAX] 10 000 DS:[EAX +d32]

00 001 DS:(ECX] 10 001 DS:[ECX + d32]

00 o010 DS:(EDX] 10 010 DS:[EDX + d32}

00 on DS:[EBX] 10 on DS:(EBX + d32]

00 100 s-i-b is present 10 100 s-i-b is present

00 101 DS:d32 10 101 SS:[EBP + d32]

00 110 DS:[ESI] 10 110 DS:{ESI + d32)

00 111 DS:[EDI] 10 M DS:[EDI + d32]

0t 000 DS:[EAX +d8] 1 000 Register—See Below
01 001 DS:[ECX + d8] 11 001 Register—See Below
01 010 DS:(EDX + d8) 1 010 Register—See Below
01 on DS:[EBX + d8] 1 01t Register—See Below
01 100 s-i-b is present 11 100 Register—See Below
o1 101 SS:[EBP + d8] 1 101 Register—See Below
01 110 DS:[ESI + d8] 1 110 Register—See Below
o1 111 DS:[EDI + d8] 1 111 Register—See Below

Register Specified by reg or r/m
During 32-Bit Data Operations

Register Specified by reg or r/m
During 16-Bit Data Operations

Function of w Field Function of w Field
mod r/m (when w = 0) (whenw =1) mod r/m (when w = 0) (when w = 1)
11 000 AL EAX 11 000 AL AX
11 001 CL ECX 11 001 CcL CX
11 010 DL EDX 11 010 DL DX
11 0N BL EBX 1 o1l BL BX
11 100 AH ESP 11 100 AH SP
11 101 CH EBP 11 101 CH BP
1 110 DH ESI 11 110 DH Sl
1 11 BH EDI 11 11 BH o]
90 Am386SE Microprocessor

H

M

PRELIMINARY Amp g\

Encoding of 32-Bit Address Mode (mod r/m byte and s-i-b byte present):

meod base Effective Address ss Scale Factor
00 000 DS:[EAX + (scaled index)] 06 xi
00 001 DS:[ECX + (scaled index)] 01 x2
00 010 DS:[EDX + (scaled index)] 10 x4
00 011 DS:[EBX + (scaled index)] 1 x8
00 100 SS:[ESP + (scaled index)]
00 101 DS:[d32 + (scaled index)]
00 110 DS:[ESI + (scaled index)] X
00 111 DS:{ED! + (scaled index)] Index Index Register
000 EAX
01 000 DS:[EAX + (scaled index) + d8] 001 ECX
01 001 DS:{(ECX + (scaled index) + d8] 010 EDX
01 010 DS:[EDX + (scaled index) + d8] 011 EBX
01 011 DS:[EBX + (scaled index) + d8] 100 no index reg (see note)
01 100 SS:[ESP + (scaled index) + d8] 101 EBP
ot 101 SS:[EBP + (scaled index) + d8] 110 ESI
01 10 DS:[ESI + (scaled index) + d8] 111 EDI
01 1M DS:[EDI + {scaled index) + dB]
Note:
When index field is 100, indicating no index register,
10 000 DS:[EAX + (scaled index) + d32] then ss field must equal 00. If index is 100 and ss does
10 001 DS:[ECX + (scaled index) + d32] not equal 00, the effective address is undefined.
10 010 DS:[EDX + (scaled index) + d32]
10 On1 DS:[EBX + (scaled index) + d32]
10 100 SS:[ESP + (scaled index) + d32]
10 101 SS:[EBP + (scaled index) + d32]
10 110 DS:[ESI + (scaled index) + d32]
10 111 DS:[EDI + (scaled index) + d32]
Note:
Mod field in mod 1/m byte; ss, index, and base fields in
s-i-b byte.

Am386SE Microprocessor]

M —

&\ awmp

PRELIMINARY

Encoding of Operation Direction (d) Fieid

in many two-operand instructions, the d field is present
to indicate which operand is considered the source and
which is the destination.

d Direction of Operation

Register/Memory «= Register

0 | reg Field indicates Source Operand;
mod r/m or mod ss index base indicates Destination
Operand.

Register « Register/Memory

1 | req Field indicates Dastination Operand;
mod r/m or mod ss index base indicates Source
Operand.

Encoding of Sign-Extend (s) Field

The s field occurs primarily to instructions with immedi-
ate data fields. The s field has an effect only if the size of
the immediate data is 8 bits and is being placed in a
16-bit or 32-bit destination.

Mnemonic| Condition tttn
(e} Overflow 0000
NO No Overfiow 0001
B/NAE Below/Not Above or Equal 0010
NB/AE Not Below/Above or Equal 0011
E/Z Equal/Zero 0100
NE/NZ Not Equal/Not Zero 0101
BE/NA Below or Equal/Not Above 0110
NBE/A Not Below or Equal/Above ot11
S Sign 1000
NS Not Sign 1001
P/PE Parity/Parity Even 1010
NP/PO No Parity/Parity Odd 1011
L/NGE Less Than/Not Greater or Equal 1100
NLUGE Not Less Than/Greater or Equal 1101
LE/NG Less Than or Equal/Not Greater Than | 1110
NLE/G Not Less Than or Equal/Greater Than | 1111

Encoding of Control or Debug or Test Register (eee)
Field

For the loading and storing of the Control, Debug, and
Test registers.

When Interpreted as Control Register Field

Effect on Etfect on
] Immediate Data8 Immediate Data 16132
0 | None None
1 | Sign-Extended Datas8 to Fill[none

16-Bit or 32-Bit Destination

Encoding of Conditional Test (tttn) Field

For the conditional instructions (conditional jumps and
set on condition), titn is encoded with n indicating to
use the condition (n = 0), or its negation (n = 1), and
ttt giving the condition to test.

eee Code Reg Name
000 CRO
010 CR2
011 CR3
Do not use any other encoding

When Interpreted as Debug Register Field

eee Code Reg Name
000 DRoO
001 DR1
010 DR2
on DR3
110 DRé6
11 DR7
Do not use any other encoding

When Interpreted as Test Register Field

eee Code Reg Name
110 TR6
M TR7

Do not use any other encoding

92 Am386SE Microprocessor

I

PRELIMINARY amp g

PHYSICAL DIMENSIONS

For reference only. All dimensions measured in inches unless otherwise noted. BSC is an ANSI standard for Basic
Space Centering.

PQB 100—Plastic Quad Flat Pack; Trimmed and Formed

’ 0.897 .
0.875 0.903 .
B 0.747 0.885 L
Pin 50 /_‘ 0.753 = .
¢ NILALAAAMAARS LA RARAARRAARA 7S
N ‘ 3/=:/“ Pin 25
= | =
— | —
— | = o
0008 ¢ — —— 0753
0.012 ‘*__{ _______ ’ _______ —
= —— | o8
— \ — | oses
M-T_lzg ‘ Pin1lD\‘ iz -
0016 F] ' Y =
l v
A /T L |
Top View Fin 100
\ 0.025 Basic — [¢— % .
Ul [
0.60 0_01;
REF Loey
0.040
Side View
o
08/04/93 MH

Notes:
1. All measurements are in inches unless otherwise noted.

2. Not to scale. For reference only.

Am386SE Microprocessor 93

n AMD

PRELIM

INARY

PQT 100—Metric Thin Quad Flat Pack—Plastic Package; Trimmed and Formed

Pin 100

AARRRAARAR
il
7 Pin 75
ﬁin 11.D.
1
12. - - - - - 13.80
B B
REF | -B- | 7420 15.80
16.20
1
i
NN |
E —| Pin50
12.00
y REF '
13.80 ‘
14.20
15.80
16.20
[See Detail X Top View
27N
N\
‘ // AY l i ‘
135 | 7 S 160_|~-A-|
1.45 \ Max)
f \ inkaly Jniiadelndeis row Seating Plane
\ /
7/ S
~4-—-
0.50 Basic
L— 1.00 Ref. Side View

Notes:

1. All measurements are in millimeters unless otherwise noted.

2. Not to scale. For reference only.

94

Am386SE Microprocessor

PRELIMINARY

PQT 100 (continued)

0.75

0.20 —=

Min
Detail X
0.17

™ 027

NN

2222222l

A nw
SSee
O

-
S

olo

|
oo

Section S-S

Notes:
. Not to scale. For reference only.

AMD and Am386 are registered trademarks of Advanced Micro Devices, Inc.
Microsoft at Work is a trademark of Microsoft Corp.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Seating Plane

Max 0.08 Lead
Coplanarity

AmD ¢

Am386SE Microprocessor

95

p———

Sales Offices

North American

ALABAMA . (205) 882-9122
ARIZONA ...(602) 242-4400
CALIFORNIA,

Culver City ...

Newport Beach ...

Sacramento(Roseville) .

San Diego{619) 560-7030

San Jose{408) 922-0500

Woodland Hills . . RO (818) 878-9988
CANADA, Ontario,

.(310) 645-1524
- (714) 752-6262
.(916) 786-6700

{613) 592-0060

Willowdale . (416) 222-7800
COLORADO (303) 741-2900
CONNECTICUT ... (203) 264-7800
FLORIDA,

Clearwater ... (813) §30-9971

Boca Raton.... ..{407) 361-0050

Orlando (Long ..{407) 862-9292
GEORGIA (404) 449-7920
IDAHO <o (208) 377-0393
ILLINOIS,

Chicago {ltasca} . (708) 773-4422

Naperville(708) 505-8517
MARYLAND(301) 381-3790
MASSACHUSETTS. . (617) 273-3870
MINNESOTA) 938-0001
NEW JERSEY,

Cherry Hill ... (609) 862-2900

Parsippany ... (201) 299-0002
NEW YORK,

Brewster

Rochester ..

NORTH CAROLINA
Chartotte . .. {704) 875- 3091

. {919) 878-8111

... (614) 891-8455

(513) 439-0268
-(508) 245-0080
..(215) 398-8006

Dayton....
OREGON ...

TEXAS,
Austin .. . {(512) 346-7830
Daltas .. . {214) 934-9099
Houston . (713) 376-8084
International

BELGIUM, Antwerpen (03) 248 43 00
... (03) 248 46 42
. {1) 49-75-10-10
. {1) 49-75-10-13

FRANCE, Paris TEL

GERMANY,
Bad Homburg .. (06172)-24061

(06172)-23195

MGnchen {089) 45053-0
. (0B9) 406490
HONG KONG,coooeocov..... .(852) 865-4525
Wanchai .(852) BE5-4335
ITALY, Milanocc......... TEL oo (02) 3390541
FAX .. (02) 38103458

JAPAN,
TOKYO oo TEL (03) 3346-7550

.. (03) 33425196
. (06) 243-3250
. (06) 243-3253
.(82) 2-784-0030
....(82) 2-784-8014

International (continued)

LATIN AMERICA,
Ft. Lauderdale

(305) 484-8600
(305) 485-9736

SINGAPOREc............. .. (65) 3481188
.. (B5) 3480161

SWEDEN,
Stockhoim area.......... TEL {08) 986180
(Bromma) FAX.. ..{08) 98 09 06
TAIWAN, Taipei............ TEL(886) 2-7153536

...(886) 2-7122183
UNITED KINGDOM,

Manchester area (0925) 830380

(Warrington) . {(0925) 830204
London area (0483) 740440
{Woking) ... (0483) 756196

North American Representatives
CANADA

Burnaby, B.C. - DAVETEK MARKETING...... {604) 430-3680

Kanata, Ontario — VITEL ELECTRONICS ..., (613) 592-0060

Mississauga, Ontario —

VITEL ELECTRONICS ... (905) 564-9720
Lachine, Quebec — VITEL ELECTRONICS (514) 636-5951
ILLINOIS

Skokie — INDUSTRIAL

REPRESENTATIVES,INC ...oooooovovvoecocecre (708) 967-8430
IOWA

LORENZ SALES oo (319) 377-4666
KANSAS

Merriam — LORENZ SALES ...

Wichita — LORENZ SALES
MEXICO

Chula Vista ~ SONIKA ELECTRONICA

Guadalajara — SONIKA ELECTRONICA

Mexico City - SONIKA ELECTRONICA.

Monterrey - SONIKA ELECTRONICA ..
MICHIGAN

Holland - COM-TEK SALES, INC ...

Brighton — COM-TEK SALES, INC ..
MINNESOTA

... (913) 469-1312
...(316) 721-0500

(619) 498-8340
(523) 647-4250
(523) 754-6480
... (623) 358-9280

... (616) 335-8418
. (313) 227-0007

Mel Foster Tech. Sales, Inc. ... (612) 841-9790
MISSOURI

LORENZ SALES ... {314) 997-4558
NEBRASKA

LORENZ SALES ... (402) 475-4860
NEW MEXICO

THORSON DESERT STATES ... (506) 883-4343
NEW YORK

East Syracuse — NYCOM, INC ..
Hauppauge — COMPONENT

...{315) 437-8343

CONSULTANTS, INC ..o (516) 273-5050
QHIO

Centerville - DOLFUSS ROOT & CO.......... (513) 433-6776

Westlake - DOLFUSS ROOT & CO (216) 899-9370
PENNSYLVANIA

RUSSELL F. CLARK CO.INC. ... (412) 242-9500
PUERTO RICO

COMP REP ASSOC, INC
UTAH

(809) 746-6550

FRONT RANGE MARKETING (801) 288-2500
WASHINGTON

ELECTRA TECHNICAL SALES (206) 821-7442
WISCONSIN

Brookfield — INDUSTRIAL

REPRESENTATIVES,INC ... {414) 574-9393

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or perormance charactenstics The performance @

char istics listed in this d 1are g d by specilic tests, guard banding, design and cther practices common to the industry. For specilic testing details. comtact

your local AMD sales repi The company no ibitity for the use of any circuits described herein Eggi"sé
© 1994 Advanced Micro Devices, Inc.
184208 4/7/94

Tel: (408) 732-2400 + TWX: 810-339-9280 « TELEX: 34-6306 + TOLL FREE: (800) 538-8450

1 Advanced Micro Devices, Inc. One AMD Place, P.O. Box 3453, Sunnyvale, CA 94088-3453, USA
‘ APPLICATIONS HOTLINE & LITERATURE ORDERING -+ TOLL FREE: (800) 222-9323 « {408} 749-5703

Con-8M-6/94-0 Printed in USA

I

I

T

